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Introduction

Theorem 0.1 Let D be an elliptic partial differential operator of order one1 on a smooth, closed, even
dimensional manifold M . Denote by σD ∈ K(T ∗M) its symbol class. Then

Ind(D) =

∫
T∗M

ch(σD) Todd(TM ⊗ C)

This paper is a short exposition to two modern approaches of the Atiyah-Singer Index The-
orem utilizing methods of operator theory.

The first three chapters set up the stage. In Chapter 1, we explain standard properties of
EPDOs and end with how we can apply functional calculus. In Chapter 2 we prove Bott
periodicity for stable C∗ homology theories. In Chapter 3, we explain topological back-
ground: the construction of topological index via orientations and the Chern character map.
In Chapter 4, we reformulate Thm. 0.1 as

Inda = Indt

In the last two chapters we look into two proofs. In Chapter 5, we follow Higson’s asymp-
toticK-theory ∗-morphism proof for EPDOs of order one, [Hig93]. This notion replaces the
use of pseudodifferential calculus. In Chapter 6 we look at Debord and Lescure’s, [DL08],
which utilizes KK-theory.

The common intersection between the two proofs is the notion of deformation groupoids.
Groupoid algebras have both a geometrical and analytic flavour, enabling analysis of singu-
lar behaviors. The tools presented leads nicely to the index proof for foliations, [CS84]. The
aim is therefore to give an introduction to the noncommutative language for index theory.

We will closely follow the notes [Hig14],[Ebe14], and [DL08]. Conventions and prerequi-
sites are stated in the start of each chapter. It is recommended that the reader has back-
ground in the basics of C∗ algebras, such as the Gelfand transform, GNS construction, and
Hilbert Modules. It would be helpful to keep [Bla06] by hand.

1This is the essential case. Higher order cases reduces to the order one case, which classically requires pseu-
dodifferential operators.
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Chapter 1
Elliptic Partial Differential Operators

The prerequisites are elementary Fourier theory[Ray91, Ch.1] and some basic theory of
unbounded linear operators, [Tao09], [Wil14, Ch. 7]. For s ∈ R,W s denotes the completion
of S(Rn), the Schwartz functions on Rn, by the Sobolev norm

||f ||2s :=

∫
(1 + |ξ|2)s|f̂(ξ)|2 dξ.

All structures considered are smooth. Γ(M ;E) denotes smooth sections of a bundle E →
M . We will be focusing on partial differential opeartors of order 1, but will state otherwise
when working in generality.

In the first section, we define EPDOs, and explain how we may pass classical inequalities
to that on Hermitian vector bundles over closed manifolds. We prove C∞ Hodge Theorem,
Thm. 1.12.

In the second section, we give a geeneral construction of EPDOs. In the last section, we
introduction the language of functional calculus, which will be the basis of constructing
K-theory classes in Chapter 4. This section can be omitted in on first read and reviewed
again.

1.1 Partial Differential Operators

Definition 1.1 LetM be a smooth manifold andEi →M be two smooth vector bundles over
R (or C). A partial differential operator (PDO) P : Γ(M,E0) → Γ(M,E1) of order k is a linear
map such that:

1. P is local: if s ∈ Γ(M,E0), s|U = 0 for some open subset U ⊆M , then (Ps)|U = 0.

2. If x : U → Rn is a chart, φi : Ei

∣∣∣
U
→ U × Rpi a trivialization, then the localizaed

operator φ1 ◦ P ◦ φ−1
0 can be expressed as

(φ1 ◦ P ◦ φ−1
0 )(f)(y) =

∑
|α|≤k

A(α)(y)
∂α

∂xα
f(y)

for each f ∈ C∞(U,Rp0) where Aα : U →Mp1,p0(R) is smooth.

1 is necessary for 2 to make sense. We now give a pointwise definition of symbol.
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Definition 1.2 Let P : Γ(M,E0)→ Γ(M,E1) be a PDO of order k. Let y ∈M , ξ ∈ T ∗yM and
e ∈ (E0)y . Pick f ∈ C∞(M ;R) with f(y) = 0 and (df)y = ξ; s ∈ Γ(M,E0) with s(y) = e.
We define the symbol at y, ξ of P to be the linear map

σP (y, ξ) : (E0)y → (E1)y

σP (y, ξ)(e) :=
ik

k!
P (fks)(y) ∈ (E1)y

Lemma 1.3 The expression smbk(P )(y, ξ)(e) only depends on y, ξ, e.

Proof: In local coordinates, choose a chart U , for which both E0 and E1 are trivial, and
ξ =

∑
ξidx

i. Then

ik

k!
P (fks)(y) =

ik

k!

∑
|α|≤k

∑
β+γ=α

α!

β!γ!
Aα(y)

∂|β|

∂xβ
(fk)(x)

∂|γ|

∂xγ
(s)(x)

So by induction,
smbk(P )(y, ξ)(e) = ik

∑
|α|=k

Aα(y)ξαe

�

If P : Γ(M,E0)→ Γ(M,E1) is a PDO of order 1, s ∈ Γ(M,E0) the symbol can be computed
σP (x, dfx)s = i[P, f ]s. Hence,

Definition 1.4 Let D be an order one PDO on Γ(M,E). The symbol of D is a bundle mor-
phism,

σD : T ∗M → End(E), σD : df 7→ i[D, f ]

Sobolev Spaces on Manifolds

Definition 1.5 Pick a finite cover of a closed n manifold M , {hi : Ui
'−→ Rn}, trivializations

{φi : E|Ui
'−→ Ui × Rn} and a partition of unity µi subordinate to {Ui}. The Sobolev norm

of u ∈ Γ(M,E) is
||u||2k,M :=

∑
i

||µiφi ◦ u ◦ (hi)
−1||2k

W s(M ;E) is the completion of Γ(M ;E) with respect to this norm. The key lemma in show-
ing independence of covering is

Lemma 1.6 Let φ : U ′ → V ′ be a diffeomoprhism of open subsets of Rn with U ⊆ U ′ and V =
φ(U) ⊆ V ′ be relatively compact. Then for all s ∈ Z, u 7→ u ◦ φ extends to a bounded map

W s(V )→W s(U)

W s(U) denotes closure of C∞c (U) ⊆ S(Rn) under the Sobolev norm.

Proof: Assume s = k ∈ N and u ∈ C∞c (V ). We use equivalent norm

||u ◦ φ||2k =
∑
|α|≤k

∫
|Dα(u ◦ φ)|2 dx.
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Because U and V are relatively compact, by change of variables formula,∫
|Dα(u ◦ φ)(x)|2 dx ≤ C(φ, α)

∑
|β|≤|α|

∫
|(Dβu) ◦ φ|2 x

=

∫
C
∑
|β|≤|α|

∫
|(Dβu)|2|detDφ|−2 dy ≤ C ′||u||2k

For −k < 0, we apply duality of Sobolev spaces. �

Corollary 1.7 The equivalence class of norm ||·||k does not depend on the choices in Def. 1.5. Further,
if u has compact support in a coordinate neighborhood Ui, then ||φi ◦ u ◦ h−1

i ||k,Rn ≤ C||u||k,M
where C depends on the trivializations and charts.

Inequalities on Sobolev Manifolds

We utilize a small lemma, [Ebe14, Lem. 3.3.6], to pass standard inequalities in PDE theory
to manifolds.

Lemma 1.8 (Peter and Paul estimate in Rn) Let r < s < t ∈ R. Then for each ε > 0, there exists a
C(ε) > 0 such that for all u ∈ S, the Schwartz space of Rn, the estimate,

||u||s ≤ ε||u|t + C(ε)||u||r

holds.

Theorem 1.9 LetM be a closed manifold andE →M a Hermitian vector bundle. LetP : Γ(M ;E0)→
Γ(M ;E1) be a PDO of order k. Then:

1. The inclusion W l →W k is injective for k > l.

2. (Sobolev embedding) For l > n
2 + k, the elements of W l are Ck sections.1

3. (Rellich compcatness) The inclusion W l →W k is compact if l > k.

4. (Gardings inequality) If P is elliptic, then there is a constant C such that

||u||k+l,M ≤ C(||u||l,M + ||Pu||l,M )

for all u ∈W k+l.

5. P induces a continuous operator W l+k →W l for all l.

6. (Duality) The map W k → (W−k)∗ given by u 7→ 〈v, 〈u, v〉〉 is an antilinear isomorphism.

7. (Elliptic regularity) Let Pu = f (takes place in W r−k ) f ∈W l, u ∈W r for some integer r,
then u ∈W l+k.

1k times differentiable.
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Proof: The translation proofs are similar. We illustrate 4. Let ui := φi ◦ u ◦ h−1
i . Then

||u||k+l,M ≤ C
∑
i

Ci(||µiui||l,Rn + ||Pµiui||l,Rn)

by Garding’s in Rn. We analyze the last term. If ai ∈ Cc(Ui), with aiµi = µi, then

||Pµiui||l,Rn ≤ Ci (||[P, µi]aiui||l,Rn + ||µiPaiui||l,Rn) ≤ Ci (||[P, µi]aiui||l,Rn + ||Pu||l,Rn)

For each ε > 0, the first term is bounded by ε||aiu||k+l + C(ε)||aiu||l, using Lem. 1.8. We
bound again by Cor. 1.7, to norm on manifold. Result follows by letting ε→ 0. �

Garding’s and Rellich implies that if P is an EPDO of order k, then P : W k+l → W l has
finite dimensional kernel and closed image. Regularity and Sobolev embedding implies

Theorem 1.10 (local regularity) If P is an EPDO, P : W k+l →W l, with Pu = f and f is smooth
section, then u is smooth.

Hence, dimension of kernel does not depend on l. We now consider the formal adjoint. 2

Definition 1.11 Given Riemannian closed manifold M , with Hermitian bundles Ei →M , P
a PDO of order k, a formal adjoint P ∗ : Γ(M ;E1)→ Γ(M ;E0) is a PDO such that 〈Px1, x2〉 =
〈x1, P

∗x2〉 for all xi ∈ Γ(M ;Ei). 3

If P is an EPDO of order k, P ∗ exists, is unique and is also an EPDO of order k. Further, its
symbol can be computed pointwise. Hence, the Fredholm index is independent of l. For
the l = 0 in Thm. 1.9, the induced map of P , Q : W k → L2, gives

L2(M ;E1) = imQ⊕ kerQ∗.

By Thm. 1.10, kerQ∗ = kerP ∗, giving

Theorem 1.12 (C∞ Hodge theorem) Let P : Γ(M ;E0) → Γ(M ;E1) be an EPDO of order k on a
closed manifold M , then

Γ(M ;E1) = imP ⊕ kerP ∗

and P is a Fredholm operator.

1.2 Elliptic Complexes and Hodge Decomposition

We recite the construction elliptic operators due to Atiyah, [AS68].

Definition 1.13 Let M be a smooth manifold. An elliptic complex E = (E∗, P ) of length n is a
sequence

0→ Γ(M,E0)
P1−→ Γ(M,E1)

P2−→ · · · Pn−−→ Γ(M,En)→ 0

of differential operators of order 1 between complex vector bundles4 such that
2 There is a more general definition. We specialize to our context.
3 This definition holds more generally for M noncompact.
4We have restricted to Pi of order 1, sufficient for our purpose.
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1. Pi ◦ Pi−1 = 0 and

2. for each nonzero cotangent vector ξ ∈ T ∗mM the sequence

0→ (E0)m
σP1

(ξ)
−−−−→ (E1)m

σP2
(ξ)

−−−−→ · · · σPn (ξ)−−−−→ (En)m → 0

is exact.

We give an example.

Lemma 1.14 Let V be a finite dimensional vector of dimension n. For ξ ∈ V ∗, Define εξ : ΛpV ∗ →
Λp+1V ∗, w 7→ ξ ∧ w. For ξ 6= 0, we have exact complex,

0→ Λ0V ∗
εξ−→ Λ1V ∗

εξ−→→ · · · εξ−→ ΛnV ∗ → 0.

Proof: Consider adjoint, iv : ΛpV ∗ → Λp−1V ∗, iv(w)(v2, . . . , vp) = w(v1, . . . , vp). Hence,
for ξ ∈ V ∗, v ∈ V , εξiv + ivεξ = ξ(v), acts as multiplication by ξ(v). If ξ ∧ w = 0, choose
v ∈ V such that ξ(v) = 1, giving w = ξ(v)w = εx(ivw). Exactness follows. �

Proposition 1.15 The de Rham complex of a manifoldM of dimensionn is (dp : Ωp(M)→ Ωp+1(M))0≤p≤n,
where Ωp(M) = Γ(M,ΛpT ∗M)) This is an elliptic complex of length n.

Proof: d : Ωp(M)→ Ωp+1(M) is a PDO of order 1. By Def. 1.4, for f ∈ C∞(M).

σd(df)w = i(d(fw)− fdw) = i(df ∧ w)

Thus, fiberwise, ξ 7→ iξ ∧ w for ξ ∈ T ∗mM , w ∈ ΛpT ∗mM , we are reduced to Lem. 1.14. �

Definition 1.16 Let (E∗, P ) be an elliptic complex over a Riemannian manifold, where each
bundle Ei → M has Hermitian bundle metric. There is a bundle metric on ⊕iEi. Direct
sum gives an operator

P :
⊕
i

Γ(M,Ei)→
⊕
i

Γ(M,Ei).

Lemma 1.17 Let 0 → V0
f1−→ V1

f2−→→ · · ·Vn → 0 be a cochain of complex of finite dimensional
hermitian vector spaces. The following are equivalent.

1. The complex is exact.

2. The linear map f + f∗ : V∗ → V∗ is exact.

Proof: Suppose f+f∗ is an isomoprhism. f∗ defines a chain homotopy, from 0 to f∗f+ff∗ =
(f + f∗)2 giving 0 map in cohomology. The converse is element chase. �

Corollary 1.18 Let (E∗, P ) be an elliptic complex, and E =
⊕

i≥0Ei. Let P ∗ be adjoint of P . Then
P + P ∗ on Γ(M ;E) is elliptic. Hence, the restricted operators,

P + P ∗ : Γ(M,E±)→ Γ(M,E∓)

E+ :=
⊕
i

E2i, E
− :=

⊕
i

E2i+1

are elliptic ( formally self adjoint too).
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Proof: This follows from Lem. 1.17 and that symbol of adjoint can be computed pointwise. �

From the elliptic complex E = (E∗, P ) on closed manifold M , we define its cohomology 5

Hp(E) :=
ker(Pp : Γ(M,Ep)→ Γ(M,Ep+1)

im(Pp−1 : Γ(M,Ep−1)→ Γ(M,Ep)

D = P + P ∗, ∆ = D2, Hp(E) := ker ∆

Directly applying Thm. 1.12, we have

Theorem 1.19 (The Hodge decomposition theorem) Let M be a closed Riemannian manifold and E
an elliptic complex on M . Then there are orthogonal decompositions:

1. Γ(M ;E) = ker(D)⊕ im(D).

2. ker(P ) = im(P )⊕ ker(∆).

3. The natural map ker(∆)→ H(E) is an isomoprhism.

We apply results to the de Rham complex, (Ω∗(M); d). By Cor. 1.18 we have D = P + P ∗ :
Ω+(M)→ Ω−(M). Hodge decomposition yields,

Ind(D) =

n∑
p=0

(−1)p ker(∆) =

n∑
p=0

(−1)pHp(M)

representing the index of an operator as the Euler characteristic of M !

1.3 Functional Calculus on Symmetric EPDOs

In PDE theory, an operatorL : H → H , is often densely defined. Being essentially self adjoint,
is a sufficient condition for nice spectral theory.

Theorem 1.20 [Wil14, Thm. 7.34] (Spectral Theorem for Unbounded Self-Adjoint Operators) Sup-
pose that T is an unbounded selfadjoint operator in H . Then there is a locally compact space Y , a
Randon measure µ, a continuous function h : Y → R and a unitary U : H → L2(Y, µ) such that

1. UD(T ) = D(Mh) := {f ∈ L2(Y, µ) : hf ∈ L2(Y, µ)}

2. UTv = MhUv ofr all v ∈ D(T )

where Mh is multiplication operator.

As a corollary, we deduce, [Wil14, Cor. 7.3.5].

Theorem 1.21 (Functional Calculus for Unbounded Self-Adjoint Operators) Suppose that T is a self-
adjoint operator in H . Then there is a ∗-homomorphism Φ from the bounded Borel functions on R,
regarded as a C∗ algebra with sup norm, into B(H) such that

Φ(r±) = R(±i, T ), r±(x) :=
1

±i− x

where R(j, T ) := (T − jI)−1 for j ∈ C. 6

5 noting that ∆ maps Γ(M,Ep) to itself.
6That R(±i, T )−1 is bounded oeprator follows from self adjoint.
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Proof: We may assume that T acts on L2(Y, µ) by a continuous function h : Y → R. In Thm.
1.21, R(i, T ) is in fact given by Mg , with g = 1

i−h . Let F be any bounded borel function
on R, then F ◦ h is induces a bounded operator MF◦h on L2(Y, µ) with norm bounded by
||F ◦ h||∞. Define ∗-homomorphism Φ(F ) = MF◦h, which recovers

Φ(r+) = Mg = R(i, T ), Φ(r−) = Φ(r+)∗ = R(−i, T )

�
To illustrate, let D+ = ∂x + x,D− = −∂x + x.

D =

(
0 D−
D+ 0

)
: Cc(R)2 → L2(R)2

This induces bounded operator

1√
(1 +D2)

D : L2(R)2 → L2(R)2

Theorem 1.22 If D is a symmetric PDO on a closed manifold7, then D is essentially self-adjoint.

Proof: If u is orthogonal to the range of either D ± iI , then for all w ∈ C∞c (M ;S)

〈(D ± iI)w, u〉 = 0

hence, u by definition lies in minimal domain8 of (D ∓ iI)u = 0, which lies in maximal
domain, from elliptic regularity, Thm. 1.9. Then for a choice of smooth sections un → u,
(D ∓ iI)un → 0

0 = lim
n
||(D ∓ iI)un||2 ≥ lim

n
||un||2 = ||u||2

�
Standard results for bounded compact self adjoint operators, [TZ96, Pg. 515], may be ex-
tended without much effort too.

Definition 1.23 Let D be an essentially self-adjoint operator on a Hilbert space H . We say
that D has compact resolvent if for all f ∈ C0(R), the operator f(D̄) defined by spectral
theorem is compact. D̄ denotes the closure of D.

With the above definition, and Hilbert space theory, [Wil14, Ch. 3],

Corollary 1.24 IfD is an essentially self adjoint operator on a Hilbert spaceH , and ifD has compact
resolvent, then the kernel of D̄ is finite dimensional, range is closed, and H = ker(D̄)⊕ im(D̄).

We return to order one symmetric PDOs.

Proposition 1.25 LetM be a closed manifold. IfD is an essentially self adjoint operator onL2(M ;E)
and if the domain of formal adjoint of D is W 1(M ;E), then D has compact resolvent.

7Note that symmetric PDOS ares closable operators.
8Minimal domain is the domain of the closure, and maximal domain is domain of adjoint.
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Proof: By closed graph theorem, (D ± iI)−1 : L2(M) → H1(M) is bounded. By Rellich
lemma, the operators (D± iI)−1 are compact. As (x± i)−1 generate C0(R), approximation
argument shows f(D) is compact for all f . �

It suffices to consider when dom D̄ equal W 1(M ;E), but this is Thm. 1.9 restated.

Corollary 1.26 Let D be a symmetric order one, EPDO on a closed manifold M , acting on a smooth
vector bundle E. The domain of D̄ is W 1(M ;E) and D has compact resolvent.

Hence we may define maps as

φD : C0(R)→ L2(M ;E), , f 7→ f(D̄), (x± iI)−1 7→ (D̄ ± iI)−1

This construction will be used repeatedly Chapter 4 to construct K-theory classes, via an
identification. From now on, for symmetric EPDOs, we implicitly replace D with D̄.
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Chapter 2
Operator K Theory

The main prerequisites are basiccs of C∗ algebra, polar decompositions, [Wil19, Ch. 1-5].
For the Morita invariance subsection, the constructions and definitions of Hilbert modules,
[Bla06, Ch. 2.7], [JT91, Ch.1]. Given a C∗ algebra A and a Hilbert module1 EA, the sets
Mor(E) and KA(E) will denote the adjointable and compact morphisms respectively.

We review basic operator and topological K-theory [NdK17, Ch. 1-3], [Hat17, Ch. 1]. K
will denote the compact operators on an infinite dimensional separable Hilbert space. A+

will denote unitzation and ⊗ is used freely when the C∗ algebras involved are nuclear C∗
algebras, [Tak64], this includes commutative C∗ algebras and K. We work in the category
C∗Alg with objects as separable C∗ algebras, and morphisms as ∗-homomoprhisms.

The first section motivates how one pass from topological K-theory to operator K-theory.
We discuss nice properties of operatorK-theory and prove that operatorK-theory satisfies
the axioms for a stable C∗ algebra homology theory. The section ends with Morita equiva-
lences, the fundamental result in constructing newK-theory classes. In the second section,
we prove Bott periodicity from the perspective of operator K-theory.

2.1 Extending Topological K-Theory

Let F = R or C. Let K0 be algebraic K-theory group on rings R. The topological K-theory
of K0

F(X) of X is defined on the category of compact Hausdorff spaces. We recall how we
can pass from K0 to K0 via Swan’s theorem. Let S = C(X), ring of continuous functions
from X to F. If E p−→ X is F-vector bundle over compact Hausdorff X , the map

E 7→ Γ(X,E)

induces an isomorphism of categories from the category of locally trivial vector bundles
over X to the category of finitely generated projective S-modules. Compactness is neces-
sary for being finitely generated - which needs a finite partition of unity. 2

Via algebraic K-theory, if X is a locally compact Hausdorff space denote

K0
F(X) := K0(C0(X))

Further, if X is a compact Hausdorff space and A is a closed subspace, there is an exact
1We take the convention of considering right module action.
2 Projectivity follows from a choice of Hermitian metric inducing bundle E′, such that E ⊕ E′ ∼= X × Fk .
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sequence induced by the inclusion3 A ↪→ X

K0(X \A)→ K0(X)→ K0(A)

from algebraic K-theory. The extension ends here. For higher topological K-theory we
define

K−nF (X) = KF(SnX), for n > 0

where S is the suspension functor. This forms generalized cohomology theories. The dif-
ference for R and C comes in KC(X) ∼= K−2

C (X) and KR(X) ∼= K−8
R (X).

Unfortunately, Kalg
1 (Cc(X)) is distinct to K−1

C (X). 4 Operator K theory, however, extends
complex K theory well. We explore this.

Idempotents and Projections

We follow Nest’s treatment, [NdK17]. Let A be a C∗ algebra,

Idem(A) := {e ∈ A : e2 = e}

Proj(A) = {p ∈ Idem(A) ; p∗ = p}

If A is unital,
U(A) := {u ∈ A : u∗u = uu∗ = 1}

all sets are given the subspace topology. Define,

V (A) := π0(colim IdemMn(A)) ' colimn π0(IdemMn(A))

The triple (V (A),+, [0]) forms a commutative monoid. For representatives a ∈ Mn(A), b ∈
Mm(A), [a] + [b] = [a⊕ b], a⊕ b ∈Mn+m(A) is the block sum.

Definition 2.1 For unitalC∗ algebraA,K0(A) := G(V (A)) whereG(−) is group completion.

We make in fact work with projections. The inclusion i : Proj(A) ↪→ Idem(A) is a ho-
motopy equivalence, [NdK17, Lemma 2.12], inducing isomoprhism colimn(ProjMn(A))→
colimπ0(IdemMn(A)). Hence,

K0(A) ' G

(
colimn π0(Proj(Mn(A))

)

We do a computation.

Lemma 2.2 Every G ∈ GLn(C) is path connected in GLn(C) to a unitary matrix.

Proof: From Gramm-Schimdt, write U = GS1 · · ·Sn, where Si are elementary operators
path connected in GLn(C) to the identity. �

3The indexing of F is removed as proofs are identical.
4 A comparison is in, [Ros05]. Rosenberg proved the two coincides for stable C∗ algebras.
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Lemma 2.3 Let n ∈ N the trace map

Tr : π0(Proj(Mn(C))→ {0, 1, . . . , n}

is a bijection. So K0(C) ' Z.

Proof: Tr of a projection coincides with its Jordan normal form - consisting of 0 and 1 in
diagonal. By Lem. 2.2, there is a path of idempotents from projections to their normal
form. By Lem. 2.10, the path can be given as projections; Tr is well defined and bijective. �

Murray-von Neumann Equivalence

The advantage of operator K-theory is the tractable description of its elements.

Definition 2.4 Let p, q ∈ P(A)

1. Homotopy equivalence p ∼h q:

2. Unitary equivalent p ∼u h: if upu∗ = q for some unitary u ∈ A

3. Murray-von Neumann equivalent p ∼m h: if there is a v ∈ A, v∗v = p and v∗v = q.

In finite matrix algebras, 1 implies 2 implies 3. None is reversible. However, these notions
coincide in the K0 group of A. We set this up.

Proposition 2.5 Suppose p, q ∈ Proj(A) such that p ∼h q by the path pt, then there is a path of
unitaries such ut such that u∗t put = pt

Proof: By uniformity and compactness argument, we assume that ||p − pt|| < 1. There is a
path from unitary 2p− 1

xt = ppt + (p− 1)(pt − 1)

As ||xt − 1|| ≤ ||2p− 1|| ||pt − p|| < 1, it is convertible for all t ∈ [0, 1]. Write xt = ut|xt|. in
its polar decomposition, then direct computation (in the given order) yields

pxt = ppt = xpt, ptx
∗
txt = pptp = x∗txtpt

p2
tx
∗
txt = x∗xtp

2
t , pt|xt| = |xt|pt

so that u∗t put = pt. �

Corollary 2.6 Suppose p, q ∈ Proj(A) with p ∼h q then p ∼u q.

Similarly, if p ∼ q, then p ∼u q in Proj(M2(A)) and p ∼h q in Proj(M4(A)). Hence,

P (A)/ ∼' P (A)/ ∼h' P (A)/ ∼u where P (A) := colimn Proj(Mn(A))

13



Relative K Theory and Excision

We repeat similar proofs in algebraic K-theory.

Corollary 2.7 Suppose A is a C∗ algebra, then the functors

K0,K0 ◦Mn : C∗Alg→ Ab

Mn : C∗Alg→ C∗Alg, A 7→Mn(A)

are naturally isomorphic for all n.

We extend to nonunital C∗ algebras via

Definition 2.8 Suppose A is a C∗ algebra, define

K0(A) := ker(K0(A+)→ kerK0(C))

With respect to the topology, we have

Theorem 2.9 (Homotopy invariance) Let A and B be C∗ algebras and φ, ψ homotopic maps then

φ∗ = ψ∗ : K0(A)→ K0(B)

Proof: Let F : A→ C([0, 1], B) be given homotopy. Functorial composition of Proj,Mn and
unitzation yields

F+
n : ProjMn(A+)→ ProjMn(C[(0, 1], B+))

via identification Mn(C([0, 1], B+)) ' C([0, 1],Mn(B+)), a we obtain homotopy in matri-
ces, and hence identity of φ+

∗ , ψ
+
∗ . Nonunital case follows from restriction. �

Operator K-theory has yields nice description for relative K-theory. We explain the tech-
niques involved and conclude with excision.

Lemma 2.10 (Path lifting). The map C([0, 1], A)→ C([0, 1], A/J) induces an isomorphism

C([0, 1], A)/C([0, 1], J)→ C([0, 1], A/J)

Proof: We have a ∗-injective morphism whose image contains dense ∗-subalgebra

{f · π(a) : f ∈ C([0, 1]), a ∈ A}

Now ∗-homomorphism have closed image. �

Proposition 2.11 (Path lifting of unitaries and projections). Suppose ut is a path of unitaries in
A/J , U ∈ U(A) (Proj(A)) such that π(U) = u0, then there is a lift of continuous paths of unitaries
(projections) in U(A)(ProjA).

Proof: We first prove the unitary case. By compactness, we may suppose

sup
t,s∈[0,1]

||u∗tus − 1|| < 1

14



Consider path wt := lnu∗0ut.This is well defined as ln is a holomorphic on union of their
spectrum - a subset of σ(T) \ {1} using norm hypothesis. Denote lift Wt from Lem. 2.10.
Define path (with inverse e−WtU

∗ ),

Zt := UeW
t

and path via functional calculus
Ut := Zt|Zt|−1

U0 = U and
π(Ut) = u0u

∗
0ut(u

∗
tu
∗
0u0ut)

−1 = ut

�

Definition 2.12 A relativeK-cycle for (A,A/J) is a triple (p, q, x) where p and q are projections
in Mn(A) and x belongs to Mn(A) and π(x) is Murray-von Neumann equivalence between
π(p) and π(q). If x itself is a Murray-von Neumann equivalence between p and q we say that
the relative K-cycle is degenerate.

For example. Let T ∈ L(H), so by Atkinson’s lemma, T ∗T − I, TT ∗ − I are compact. With
A = L(H), J = K(H), and A/J the Calkin algebra. Then (I, I, T ) is a K-cycle.

We now have a group.

Definition 2.13 The relative K-group K0(A,A/J) is defined to be the group with one gener-
ator [p, q, x] for each relative K-cycle (p, q, x) with relations:

1. If (p0, q0, x0) and (p1, q1, x1) are relative k-cycles that can be connected by a continuous
paths of relative cycles.

2. if (p, q, x) is degenerate then [p, q, x] = 0.

3. [p⊕ p′, q⊕ q′, x⊕ x′] = [p, q, x] + [p′, q′, x′] for all relative cycles (p, q, x) and (p′, q′, x′).

Proofs in relativeK-theory are easy as there are useful paths: let (p, q, x) be a relative cycle,
ut a path of unitaries, then

(u∗t put, u
∗
t qut, u

∗
txut), (p, u∗t qut, u

∗
tx)

is a path of relative cycles; if π(p) = π(x), then π(q) = π(x) and

(p, q, tp+ (1− t)x)

is a path of cycles. Applying this, we see K0(A,A/J) is an abelian group with

[(q, p, x∗)] = −[(p, q, x)]

Hence, from Prop. 4.6.

Corollary 2.14 (Half exactness). The sequence

K0(A,A/J)→ K0(A)→ K0(A/J)

induced by the forgetful map f : [(p, q, x)] 7→ [p]− [q] is exact.

15



By mentioned techniques, the natural map

K0(J) ' K0(J+,C)→ K0(A,A/J)

is an isomoprhism, giving

Corollary 2.15 The SES of C∗-algebras

0→ J → A→ A/J → 0

yields half exact sequence
K0(J)→ K0(A)→ K0(A/J)

Stability and Morita Invariance

We give an example of unviersal C∗ algebras 5 and prove stability axiom.

Theorem 2.16 Suppose that {(An, ϕn)} is a direct sequence of C∗ algebras. Then the direct limit
(A,ϕn) = lim−→(An, ϕn) always exists.

Proof: An explicit construction is a subspace of
∏
i≥0Ai given by

A :=

{
(ai)i∈Z≥0

∈
∏
i

AI : ∃i0 ≥ 0, ai = φi,j(aj)∀i > j > i0

}
, ||(ai)|| = lim sup

i
||ai||Ai

where φi,j := φi−1 ◦ · · · ◦ φj . 6 Completion of seminorm yields universal object. �

Corollary 2.17 LetH be an infinite dimensional separable Hilbert space, and pn ∈ L(H) a sequence
of finite increasing rank projections. Then we have

lim−→L(pnH) ∼= K(H)

in particular,
lim−→Mn(C) ' K

A⊗K ' lim−→Mn(A)

We have a special result for direct limits, we prove surjectivity and refer the rest in [HR00,
Prop. 4.1.15] (which uses similar tricks).

Theorem 2.18 Let A be a unital C∗ algebra and suppose there is an increasing sequence

A1 ⊆ A2 ⊆ · · · ⊆ A

of unital C∗ algebras whose union is dense A. Then the induced map

lim−→K0(Aj)→ K0(A)

is an isomoprhism. Hence, K0(K) ' K0(C).
5 There are simple conditions [NdK17, Prop 5.15], to resolve the nonexistence of ”free objects” in C∗ Alg.
6 φi are ∗-homomorphisms, hence norm decreasing so seminorm makes sense.
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Proof: Let p ∈Mn(A) be projection. Exists some j, self adjoint a ∈Mn(Aj), ||a− p|| < 1, by
approximate identity. Hence, applying functional calculus on σ(a) ⊆ (− 1

2 ,
1
2 )∪ ( 1

2 ,
3
2 ), with

f(λ) =

{
0 if λ < 1/2

1 if λ > 1/2

f(a) is a projection in Mn(Aj), ||f(a) − a|| < 1
2 . So ||q − p|| < 1. Thus, p, q are unitarily

equivalent, [HR00, Prop. 4.1.7], and p lies in image. �

Stability axioms leads to the notion of Morita equivalence in C∗ algebras.

Theorem 2.19 [Bro73]. LetA andB be separable C∗ algebras. Then they are strongly Morita equiv-
alent if and only if A⊗K ' B ⊗K. 7

Morita equivalence yields same K-, E- and KK-theory. An important application is

Corollary 2.20 If E1, E2 are Hilbert A modules and if8 〈E1, E2〉 = A, then the natural inclusion

KA(E1)→ KA(E1 ⊕ E2)

induces isomoprhism 9

K(KA(E1))→ K(KA(E1 ⊕ E1))

This follows as theC∗ algebrasKA(E1) andKA(E1⊕E2) are Morita equivalent. A special case
occurs when H1 and H2 are Hilbert spaces, the inclusion10 K(H1) ⊆ K(H1 ⊕ H2) induces
isomoprhism

K(A⊗K(H1)) ↪→ K(A⊗K(H1 ⊕H2))

for every C∗ algebra A.

2.2 C∗ Algebra Homology Theory

We follow [Fra18] and look into the axioms of operator K-theory.

Definition 2.21 A homology theory for C∗ algebras is a sequence of functors {En : C∗Alg →
Ab}, n ≤ 0 which are ∗-homotopic invariant and for each SES of C∗ algebras 0→ I → A→
B → 0 there is a natural LES

E0(I) E0(A) E0(B)

E−1(1) E−1(A) E−1(B)

E−2(I) E−2(A) E−2(B)

∂

∂

Lemma 2.22 Let E be a half exact functor from C∗ algebras to abelian group. Then,
7This is also called stably equivalent.
8This condition means that E is full. A condition enjoying many properties.
9 KA(E) for a Hilbert A-module is a closed ideal of its adjointable morphisms, in particular a C∗ algebra.

10K(H) here denotes the compact operators on Hilbert space.
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1. For any C∗ algebras A1, A2, the E(A1⊕A2) ∼= E(A1)⊕E(A2) under the induced standard
injections and projectinos.

2. If α and β are such that α+ β is also a ∗-homomoprhism, then E(α+ β) = E(α) + E(β).

Proof: For 1, half exactness and functoriality implies in the category Ab, we have

E(A1) E(A1 ⊕A2) E(A2)
E(i1) E(p2)

E(i2)

where E(i2)E(p2) = 1 similarly for the other pair E(i2), E(p1). This characterizes E(A1 ⊕
A2). 2 follows as α(A), β(A) are ∗-subalgebras. We apply 1 to the copy α(A)⊕ β(A). �

The Barrat Puppe Sequence

Through standard topological constructions of cones and suspensions, we show how to
recover the connecting homomorphism. Conversely, we construct a homology theory via
Barrat Puppe sequence for any half exact, homotopy invariant functor.

Let A be a C∗ algebra. The cone over A, written CA := C0((0, 1], A] is the C∗ algebra of
continuous functions f : [0, 1]→ A vanishing at 0. The suspension of A, SA := C0((0, 1), A).
S and C are covariant functors on C∗Alg. 11 CA is contractible with homotopy

H : CA→ C([0, 1], CA), t 7→ f1−t(s) =

{
0 if s ≤ t
f(s− t) if t < s ≤ 1

Corollary 2.23 Naturality of LES from

0→ SA→ CA→ A→ 0

yields natural isomoprhisms ε : En−1
'−→ En ◦ S.

For a SES
0→ I → A

π−→ B → 0

The mapping cone Cπ of the is the C∗ algebra

Cπ := {(f, a) ∈ CB ⊕A : f(1) = π(a)}

0→ I → A
π−→ B → 0

Proposition 2.24 The boundary maps ∂ : En−1(B)→ En(I), n ≤ 0 are given by

∂ = −En(i2)−1 ◦ En(i1) ◦ εB

where i1, i2 are inclusions of SB, I into Cπ and εB : En−1(B)
'−→ En(SB) is the boundary map

of 0→ SB → CB → B → 0.
11 From nuclearity, one deduce CA ∼= C0((0, 1])⊗A and C0((0, 1))⊗A ∼= C0(R, A).
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Proof: We have commutative diagram with exact rows, where ι = [i1, i2].

0 SB CB B 0

0 SB ⊕ I Cπ B 0

0 I A B 0

ι

pr1

pr2

pr1

pr2

p

π

From naturality of LES,
En−1(B) En(SB)

En−1(B) En(SB ⊕ I)

En−1(B) En(I)

εB

d

En(pr2)

En(pr1)

∂

Combining with Cor. 2.22

En(CB)

En−1(B) En(SB ⊕ I) ' En(B)⊕ En(I) En(Cπ)

En(I)

d=

εB
∂


Eι=[En(i1), En(i2)]

En(ι)d = 0 then inmplies En(i1)εB + En(i1)∂ = 0. �

Prop. 2.24 suggests the converse construction. We need a lemma first.

Lemma 2.25 Let E : C∗Alg → Ab be a homotopy invariant half exact functor, then given SES,
0→ I → A

π−→ B → 0, i2 : I → Cπ induces an isomorphism E(I)→ E(Cπ).

Proof: Surjectivity follows from SES 0→ I → Cπ → CB → 0. Construct auxiliary objects.

Q := {f ∈ C([0, 1], A) : f(0) ∈ I}
α : I → Q, b 7→ (cb : t 7→ b)

β : Q→ I, f 7→ f(0)

γ : Q→ Cπ, f 7→ (πf, f(1))

αβ ' idQ, βα = idI

E(γ) is injective from 0→ CI → Q
γ−→ Cπ → 0. So E(i2) is injective as

I Cπ

Q

i2

α
γ
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Theorem 2.26 LetE : C∗Alg→ Ab be homotopy-invariant, half exact functor. DefineE−n, n ≥ 0

by E−n := E ◦ Sn and for SES of C∗ algebras 0→ I → A
π−→ B → 0, define

∂ : En−1(B) = En(SB)→ En(I), ∂ = −En(i2)−1 ◦ En(i1)

where i1 : SB → Cπ, i2 : I → Cπ are component inclusions. This forms a C∗ algebra homology
theory.

Proof: Ens are homotopy invariant half exact as suspension preserves exactness and ∗-
homotopies. Boundary maps are natural as construction of mapping cone is. We show
LES is exact:

En(SA)→ En(SB)
∂−→ En(I)→ En(A)→ En(B)

En is half exact so we have exactness at En(A). From

En(SB) En(I) En(A)

En(SB) En(Cπ) En(A)

−id

∂

En(i2)

En(i1) En(pr2)

From Lem. 2.25 we get exactness at En(I).

Lastly, we construct auxiliary double cone with an associated SES

D = {(f, g) ∈ CB ⊕ CA : f(1) = π(g(1))}

0→ SA
i2−→ D

q−→ Cπ → 0, q : (f, g) 7→ (f, f(1))

This yields commutative diagram,

En(SA) En(SB) En(I)

En(SA) En(D) En(Cπ)

En(Sπ) ∂

−En(i1) En(i2)

En(i2) En(q)

From Lem. 2.22, reversal map r : SA→ SA induces −id. Also, i2 ◦ r, i1 ◦ Sπ : SA→ D are
∗-homotopic. This gives exactness at En(SB), by Lem. 2.25. �

2.3 Cuntz’ Proof of Bott Periodicity

Operator K Theory is in fact a stable C∗ homology theory. We regard K as algebra of com-
pact operators l2(N), and denote Eij the rank 1-operators sending ith to jth standard basis.

Definition 2.27 A functor E : C∗Alg→ Ab is stable if the corner inclusion 12 inclusion E00⊗
idA : A→ K⊗A, induces an isomoprhism E(A)

∼=−→ E(K ⊗A).
12The choice of E00 is arbitrary, it can be replaced by any other Eij
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We prove that all stable C∗ algebra homology theory satisfies Bott periodicity. The argu-
ment has a nice geometric picture, using the notion of infinite swindle.

Definition 2.28 (Toeplitz algebra) The isometry S,

S : K → K, ξn 7→ ξn+1

generates a C∗ algebra, C∗(S) := T , the Toeplitz algebra.

The Toeplitz algebra C∗(S) is the universal unital C∗ algebra generated by an isometry,
[Cob67]: for any unital A ∈ C∗Alg and any isometry w ∈ A, there is a unique unital13

∗-homomorphism,
C∗(S)

S 7→w−−−→ A

Definition 2.29 We denote σ : T → C(S1), S 7→ z, the symbol map. The kernel of σ is the
compact operators K, yields the Toeplitz extension14

0→ K → T σ−→ C(S1)→ 0

we let σ1 be the composition of σ with the evaluation map at 1.

We will require the small lemma, [Fra18, Lem. 12]

Lemma 2.30 Suppose 0→ I → A
π−→ B → 0 is a SES. Given ϕi : C → I , i = 0, 1 and σ : C → B

∗-homomoprhisms and σ has a lift σ̄ : C → A.

C

0 I A B 0
σ̄

σ

ϕi

π

If θi = ϕi + σ̄, i = 0, 1 are ∗-homomoprhisms 15, and exists homotopy between θ0 and θ1 such that
π ◦ θt = σ, ∀t ∈ [0, 1], then ϕ0, ϕ1 induces the same maps in homology.

Theorem 2.31 LetE−n, n ≥ 0 be a stableC∗ algebra homology theory. Then, the maps σ1 : T → C,
ι : C→ T induces inverse isomorphisms between E−n(T ) and E−n(C).

Proof: 16 We do an infinite swindle by working in larger spaces. Regard K ⊗ T as operators
on l2(N)⊗ l2(N) and define

T T

K ⊗ T

ισ1

ϕ0 ϕ1

ϕ0 : S 7→ E00 ⊗ S, ϕ1 :, S 7→ E00 ⊗ 1

By stability, result follows if En(ϕ0) = En(ϕ1). We work in an auxiliary space. Consider
SES,

0→ K⊗ T → K⊗ T + T ⊗ 1
π−→ C(S1)→ 0

13Note that T is unital
14The proof is an application of functional calculus with Atkinson’s lemma, [HR00, Ch.2]
15we identified ϕi in A
16 One might show ψ1 := ι ◦ σ1 is homotopic to identity, but this is not true.
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where first map inclusion, second map is restriction to T ⊗ 1, S ⊗ 1 7→ z. We apply Lem.
[Fra18, Lem. 12], to the diagram

T

0 K ⊗ T K ⊗ T + T ⊗ 1 C(S1) 0

ϕi

σ
σ̄

π

σ̄ : S 7→ S(1− E00)⊗ 1

To apply lemma, define isometries W0,W1 in K ⊗ T +K ⊗ 1 by

W0 = E00 ⊗ S + S(1− E00)⊗ 1, W1 = E00 ⊗ 1 + S(1− E00)⊗ 1

W0 :

• • • · · ·

• • • · · ·

• • • · · ·

...
...

...

W1 :

• • • · · ·

• • • · · ·

• • • · · ·

...
...

...

↓,→ are increasing direction

So action of S goes downwards. We construct a path of isometries Wt, t ∈ [0, 1] from W0 to
W1 satisfying π(Wt) = z = π(S ⊗ 1) for t ∈ [0, 1].

The construction begins in M2(C)⊗ T . Let

U0 = E00 ⊗ S + E10 ⊗ E00 + E11 ⊗ S∗

E = E01 ⊗ 1 + E10 ⊗ 1, F = E00 ⊗ E00 + E01 ⊗ S∗ + E10 ⊗ S

U0 :

• •

• •

• •

...
...

E :

• •

• •

• •

...
...

F :

• •

• •

• •

...
...

↓,→ are increasing direction
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So U0 = FE is homotopic to identity in unitaries of M2(C)⊗ T .17

We define a new homotopy Vt,by adding (1−E00−E11)⊗1 ∈ T ⊗1 to the path inM2(C)⊗T ,
from V0 = U0 + (1 − E00 − E11) ⊗ 1 to V1 = 1. Since π(1 − E00 − E11) = π

(
(SS∗)2

)
,

π(Vt)π(W1) = z for all t. We have our homotopy. �

With the same proof as Thm. 2.31, but tensoring a C∗ algebra A, and idA at the right place,

Corollary 2.32 For any C∗ algebra A, we get isomorphisms between E−n(T ⊗A) and E−n(A).

Now let T0 be the kernel of the symbol map σ1 : T → C, then there is a split short exact,

0 T0 T C 0
σ1

ι

Applying previously results, for a stable homology theory, one has En(T0 ⊗ A) = 0, n ≤ 0
for any C∗ algebra A, in particular

Theorem 2.33 (Bott Periodicity) For any C∗ algebra A, the boundary maps in extension 0 → K ⊗
A → T0 ⊗ A

σ0⊗id−−−−→ SA → 0 are natural isomoprhisms, En−2(A) → En(A), having made the
identifications, En−1(SA) = En−2(A), En(K ⊗A) = En(A).

Proof: We have the SES of nonuntial form of Toeplitz extension,

0→ K → T0
σ0−→ C0(0, 1)→ 0

σ0 is symbol map with (0, 1) identified to S1 \ {1} via t 7→ e2πit. As C0(0, 1) is nuclear,
tensoring with A remains exact, [PBO08, Cor. 3.7.4],

0→ K⊗A→ T0 ⊗A
σ0⊗id−−−−→ SA→ 0

Result follows from Cor. 2.32. �

Corollary 2.34 Given a SES, 0→ I → A→ B → 0, there is a six term exact sequence

K0(I) K0(A) K0(B)

K−1(B) K−1(A) K−1(I)

∂2◦∂

where ∂ is homomoprhism K0(B)→ K−2(B) induced from Thm. 2.33, and ∂2 from LES.

17 If G is idempotent unitary in C∗ algebra, G = −P + P⊥, P⊥ = 1 − P , for P projection. This yields a
homotopy to identity via unitary path t 7→ eπitP + P⊥.
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Chapter 3
Orientations and Chern Character

In this chapter we set up the topological background for topological index and the Chern
character map. The first section describes orientations and fiber integration - the general
construction which can be omitted in first read. It is strongly recommended to be reviewed
after reading Chapter 4. The last three sections build from scratch the Chern character map,
using tools as the Serre spectral sequence.

R will denote unital commutative ring. We introduce Serre Spectral Sequence to compute
H∗(BU(n);R), bringing us to characteristic classes. All the spaces X are paracompact. We
use H∗(X;R) :=

∏
Hq(X;R).

3.1 Universal E-Orientations

Let V → X be a vector bundle, we associate to it a metric1. Define Th(V ) := D(V )/S(V ),
the Thom space of V , as the quotient of the total spaces of disk bundle by the sphere bundle, .

Definition 3.1 Let E be a multiplicative cohomology theory, V → X a topological vector
bundle of rank n. An E-orientation or E-Thom class on V is an element of degree n,

u ∈ Ẽn(Th(V )) ∼= E(D(V ), S(V ))

in the reducedE-cohomology2 such that each restriction j∗xu ∈ En(D(V )x, S(V )x) ∼= Ẽn(Sn)
is a generator, where jx denotes the inclusion map of each fiber.

Right conditions yields Thom-Dold isomoprhism, c ∪ (−) : E∗(X)
'−→ Ẽ∗+n(Th(V )), [Koc96,

Prop 4.3.6]. In Ch. 4, we compare Thom homomorphisms ofKU and ordinary cohomology
theory. This is the motivation for our topological index map in Thm. 4.12. It is computed
through fiber integration via orientation.

Definition 3.2 (Pontrjagin Thom collapse map) Let i : X ↪→ Y be a tubular embedding
embedding of manifolds. Denote the normal bundle as the fiberwise quotient NiX :=
i∗TY/TX .

ci : Y → Y/(Y − f(NiX)
'−→ Th(NiX)

1such exists as X is paracompact
2one may construct a reduced from an unreduced theory, and vice versa [ASGP02, Ch 12.].
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Observe that if B is a compact Hausdorff space, then

(B × Rn)+ ∼= ΣnB+
∼= Sn ∧B+

where (−)+ denotes one point compactification and (−)+ the adjoining a base point.

This yields an algorithm. Let H be a multiplicative cohomology theory, p : E → B a fiber
bundle over compact space, and a tubular embedding,

i : E ↪→ B × Rn

NiE → E

The Thom class map factors to a map τ .

B × Rn Th(Ni(E))

(B × Rn)+

τ

by universal property. Suppose Th(NiE) has an H-orientation and a Thom isomoprhism,

H∗+n−dimF (Th(NiE)) H̃∗+n−dimF (ΣnB+)

H∗(E)

H∗−dimF (B)

τ

susp,'

thom

This is the map we will see in Ch. 4.

3.2 Serre Spectral Sequence

We elaborate on parts of [Koc96].

Theorem 3.3 (Serre Spectral Sequence) Let

F E

B

π

be a Serre fibration. Assume B is a simply connected simplicial complex3. There is a multiplicative
spectral sequence

Es,t2 = Hs(B;Ht(F ;R))⇒ H∗(E;R)

3There is another version for R charecteristic 2. Proof is verbatim.
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Proof: Let {Bn}n∈N be n-skeletal filtration ofB;En = π−1(Bn). LES in cohomology induces
exact couple

H∗(En;R) H∗(E(n−1);R)

H∗(En, E(n−1);R)

j∗

δp∗

The bigrading is

Ds,t = Hs+t(Es;R), Es,t1 = Hs+t(Es+t, E(s+t−1);R)

The convergence condition [Koc96, Lem. 2.2.4] is: for fixed k,

Hk(En)→ Hk(En−1)

is an isomorphism for all n sufficiently large.

Using cellular cohomology, the statement is true for filtration {Bn}n∈N,

Hk(Bn)→ Hk(Bn−1)

for all n large. As we have serre fibration, we show this property passes to total space.

By cellular approximation, [Hat02, Thm. 4.8], πi(B,Bn) = 0 for sufficiently large n. If
(B,Bn) is k − 1-connected, then so is (E,En) by lifting property. By Hurewicz theorem
and LES Hk(En;Z)→ Hk(E;Z) is an isomoprhism, hence by naturality of UCT,

0→ Tor(Hn−1(X;Z), R)→ Hn(X;R)→ Hom(Hn(X;Z);R)→ 0

Hi(E;R) → Hi(En;R) is an isomoprhism. In particular, the filtration En satisfies Mittag-
Leffler condition, [Koc96, Cor. 4.2.4], so spectral sequence converges to4

H∗(E) = lim←−H
∗(En).

We describe the E1 page. Let In := { ∆ : n- simplix of B }. Subdividing if necessary, as-
sume (π−1(i), π−1(∂(i)) ' (Dn, Sn−1)× F , for each i ∈ In. Thus,

En,t1 = Hn+t(En;En−1;R) ' H̃n+t(En/En−1;R)

= H̃n+t
(∨

Sn ∧ F+;R;
)
'
∏
i∈In

H̃t((Fi)+;R)

'
∏
i∈In

Ht(Fi;R) = Cn(B;Ht(Fi;R))

by wedge5 and suspension axiom. Let Bni denote interior of i ∈ In removed. fj : Sn → Bn

attaching map. Define, for skeletal filtration {Bn}n∈N,

fji : Sn
fj−→ Bn → Bn/Bni ' Bni , dji := deg fji

4Here we have direct product of cohomology.
5If for any set of pointed CW complexes Xi, H̃∗(

∨
iXi) '

∏
i H̃
∗(Xi) via canonical map.
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Cellular complex of Bn is defined[Hat02, Ch. 2] such that

∂ :
⊕

j∈In+1

Zej
∂n−→

⊕
i∈In

Zei, ∂

∑
j

njej

 =
∑
i

∑
j

djinj

 ei

Computing d1,

d1 : Es,t1 = Hs+t(Es, Es−1;R)→ Hs+t(Es;R)
δ−→ Hs+t+1(Es+1, Es;R) = Es+1,t

1

Hom
(⊕

i∈In Zei;H
t(F ;R)

)
Hom

(⊕
j∈In+1

Zej ;Ht(F ;R)
)

Es,t1 '
∏
i∈In H

t(F ;R)
∏
j∈In+1

Ht(Fj ;R) ' Es+1,t
1

Ht(Fi;R) Ht(Fj ;R)

Hom(∂,1)

' '

d1

dij

shows d1 coincides with cellular cohomology of B with coefficients inHt(F ;R). This gives
the E2 page. The multiplicative property follows as AHSS [Koc96, Prop. 4.2.9], and coin-
cides with the cup product. 6 �

Proposition 3.4 (Thom Gysin sequence) Given a Serre Fibration

Sn E

B

π

Assume that B is a simply connected simplicial complex. Then there is a long exact sequence

· · · → Hk(B;R)
π∗−→ Hk(E;R)→ Hk−n(B;R)

τ−→ Hk+1(B;R)→ · · ·

where τ is given by an element u ∈ Hn+1(B;R), called the Euler class of π.

Proof: The conditions of Thm. 3.3, are satisfied. As Ht(Sn;R) = R only when t = 0, n,
nontrivial differentials occur at,

E∗,nn+1

E∗+n+1,0
n+1

dn+1

6A simpler proof for multiplicative property is via Cartan Eilenberg system, [Goe].
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Let i := 1 ∈ H0(B,R) ∼= E0,n
n+1. The multiplicative structure, denoted ·, induces

E∗,0n+1 → E∗,nn+1, i⊗ b 7→ i · b

This is an isomorphism, as multiplicative structure is given by cup product, [Koc96, Ch. 4].
Let u := dn+1(i) ∈ En+1,0

n+1 . As dn+1 is a graded derivation, dn+1 is given by cup product
with u.

dn+1(i · b) = dn+1(i) · b+ (−1)ni · dn+1(b) = u · b

From the following diagonal
. . .

Es−1,1
∞

Es,0

We have
Es,0∞

'−→ F sHs '−→ · · · → F s−nHs → Es−n,n∞ → 0.

As Es−n−k,n+k
∞ = {0} for all k ≥ 0, implies, F s−nHs = Hs(E;R), which yields,

0→ Es,0∞ → Hs(E;R)→ Es−n,n∞ → 0

Combining with exact sequence,

0 Es,n∞ Es,nn+1 Es+n+1,0
n+1 Es+n+1,0

∞ 0

Hs(B;R) Hs+n+1(B;R)

ker dn+1

'

dn+1

'

coker dn+1

u·(−)

yields our desired equation. �

3.3 Cohomology of BU(n)

We look atG = U(n) and at a model of the classifying space ofBU(n).7 The section not only
computes cohomolgy, but set up the bijection between characteristic classes that would be
used to define Todd classes.

Definition 3.5 F = R or C. Let Gn(Fq) be the Grassmanian manifolds. and En(Fq) the canoni-
cal n vector bundle over Gn(Fq).

Gn(F∞) := colimGn(Fq), En(F∞) := colimEn(Fq).

be direct limit of spaces via canonical inclusion. These form the universal bundle γFn =
(En(F∞), Gn(F∞), π).

Theorem 3.6 For paracompact spaces X , we have a natural bijection

[X,Gn(F∞)]→ VectnF(X), [f ] 7→ f∗(En(F∞))

7 Similar argument follows with for G = O(n) for Z/2 coefficients
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Proof: Isomorphisms E ∼= f∗(En) of E → X corresponds to liner injections g : E → F∞.

E f∗(En) En F∞

X Gn

g

f ′

p

π1

f

where π1(l, v) = v. Given isomorphism, composition is injective. Conversely, given g, an
isomorphism is given by g(p−1(x)). Surjectivity follows by piecing local trivializations, in-
jectivity by a ”switch” homotopy: let g0, g1 : E → F∞. Define L+

t : F∞ → F∞

(x1, x2, . . .) = (1− t)(x1, x2, . . .) + t(x1, 0, x2, 0)

Post composing g0 with L+
t switches the image of g0 into odd coordinates. Similarly, a ho-

motopy L−t , switches image of g1 into even coordinates. The new maps, labelled g0, g1, are
connected by gt := (1− t)g0 + tg1. �

Characteristic Classes

Definition 3.7 Let . A characteristic class cn,q is a natural transformation,

cn,q : Vectn(−)⇒ Hq(−, R)

over paracompact spaces. Using the structure in H∗(−, R), We have a graded ring Λ :=⊕
Λq , the ring of characteristic classes. 8

Corollary 3.8 H∗(Gn(F∞), R) ' Λ as rings.

Proof: Let α ∈ H∗(Gn(F)∞, R), an n-vector bundle, E → B. There exists canonical map
g : B → Gn(F∞), by Thm. 3.6. Define α̂ ∈ Γ by

α̂(E) = g∗(α) ∈ H∗(B;R)

α̂ is natural. Thm. 3.6 and naturality shows assignment α 7→ α̂ is bijective. �

We thus compute cohomology of Grassmanians.

Lemma 3.9 Consider a bundle Sn−1 → E
p−→ B with E contractible. If n > 1, then

H∗(B;R) ∼= R[[u]]

where u is as Thm. 3.4.

Proof: By the LES for fiber homotopy groups, B is n− 1 simply connected. Hence, by Thm.
3.4, we have Hi(B;R) = 0 for 0 < i < n and an isomoprhism (−) ∪ u : Hi(B;R) →
Hi+n(B;R) for all i ≥ 0. �

8Abusively, an element here is also referred as a characteristic class.
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Corollary 3.10
H∗(BU(1);R) ∼= R[[u]]

Proof: We consider the fiber bundle of CW complexes

S1 → S∞ → CP∞ = G1(C)

S∞ is contractible as πk(S∞) = {0},∀k ≥ 0 and Whitehead theorem applies. �

Proposition 3.11 The cohomology ring BU(n) is the polynomial ring on generators ck of degree 2k
for 1 ≤ k ≤ n,

H∗(BU(n);R) ' R[[c1, . . . , cn]]

Further, Bi;BU(n1)→ BU(n2) for n1 ≤ n2, has induced map in cohomology given by

(Bi)∗(ck) =

{
ck for 1 ≤ k ≤ n1

0 otherwise

Proof: For n = 1, we have H∗(BU(1)) ' R[[c1]]. We proceed by induction. Suppose state-
ment is true for n − 1. Consider canonical map BU(n − 1) → BU(n) and homotopy fiber
sequence9

S2n−1 → BU(n− 1)→ BU(n)

Thom Gysin and hypothesis implies H2k+1(BU(n)) = 0 for all k with SES,

0→ H2k−2n(BU(n))→ H2k(BU(n))
(Bi)∗−−−→ H2k(BU(n− 1))→ 0

for all k. combining such sequences for all 2k ≤ 2n,

0→ R
cn∪(−)−−−−−→→ H∗≤2n(BU(n))

(Bi)∗−−−→ H2k(BU(n− 1))→ 0

As H∗(BU(n− 1)) is a free R-algebra, the sequence splits.

H∗≤2n(BU(n)) ' (R[[c1, . . . , cn]])∗≤2n

Result follows by induction. �

The cks constructed are called the kth Chern class. A similar analysis, [Koc96, Prop. 2.3.3],
via the spectral sequence U(n)/U(1)n → BU(1)n → BU(n) gives the splitting principal. 10

Theorem 3.12 For n ∈ N, let µn : B(U(1)n) → BU(n) be the canonical map. Then the induced
pullback is a monomorphism.

Theorem 3.13 Suppose for every vector bundle E → B of rank n we have assigned p(E), q(E) ∈
H∗(B), that are natural with respect to the continuous maps. If p(E) = q(E) for every split vector
bundle E, then p(E) = q(E) for every vector bundle E.

Proof: By naturality,(µn)∗(p(γn)) = p((γ1)n) = q((γ1)n) = (µn)∗(q(γn)). From injectivity,
Thm. 3.12, p, q coincides on γn. By universality of BU(n), Thm. 3.6, result follows. �

9In model category, a fibrant resolution
10 However, a much simpler is in [Hat17, Pg. 79], which only uses tools discussed.
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3.4 Chern Character Map

We work in R = Q from now on. As a corollary of Thm. 3.12, Kunneth Theorem and
induction, [Koc96, Ch. 2]

Corollary 3.14 From the induced map BU(1)n → BU(n), H∗(BU(n)) is isomorphic to the ring
of formal power series in degree 2 indeterminates x1, . . . , xk invariant under permutation of xj .
Generators xj maps to the Euler class (c1)j of the canonical line bundle over jth factor.

Definition 3.15 The Chern character is the characteristic class of rank k bundles corresponding
to

ex1 + ex2 + · · ·+ exk

Lemma 3.16 Let L and L′ be line bundles over M , then c1(L⊗ L′) = c1(L) + c1(L′).

Proof: First suppose L = L′ = EU(1), M = BU(1) construct L′′ over M ×M , whose fiber
over pair (m,m′) is Lm ⊗ L′m′ . By Kunneth,

H2(M ×M) ∼= H2(M)⊗H0(M)⊕H0(M)⊗H2(M).

By restriction of L′′ to M × {∗}, {∗} ×M , and definition of the Kunneth map,

c1(L′′) = c1(L)⊗ 1 + 1⊗ c1(L′)

Restricting to diagonal M ⊆M ×M , we have bundle L⊗ L′. By functoriality,

c1(L⊗ L′) = c1(L) + c1(L′)

�

Proposition 3.17 Let V,W be complex vector bundles over M . Then

ch(V ⊕W ) = ch(V ) + ch(W ), ch(V ⊗W ) = ch(V ) ch(W )

Proof: By Kunneth theorem and Thm. 3.14, the induced map fk,l : BU(1)l × BU(1)k →
BU(k)×BU(l) in cohomology is injective. It suffices to prove the case for direct sum of line
bundles. First equality is clear and by Lem. 3.16.

ch(L1 ⊗ L2) = ec1(L1⊗L2) = ec1(L1)+c1(L2) = ch(L1) ch(L2)

�

Corollary 3.18 The Chern character gives a homomorphism of rings

ch : K(M)→ Hev(M)

for any compact space M .

The ring structure ofK-theory arise from tensor product, [Hat17, Ch.2]. We may also derive
it via operator K theory: given a homomorphism of C algebras, A → B, such that A is
commutative and image lies in center of B. Then B ⊗C A → A is a ring homomoprhism
inducing

K(B)⊗K(A)→ K(B ⊗C A)→ K(A)

making K(B) a module over K(A).

31



Proposition 3.19 Let F (x) be a formal power series of x. There is a unique multiplicative class CF
such that, on line bundles,

CF (L) = F (c1(L)) ∈ H∗(M)

where c1(L) is the Euler class associated to the bundle L→M .

Proof: The proof is similar as Prop. 3.17. We define for rank n vector bundle, the character-
istic class corresponding to F (x1)× · · · × F (xn) ∈ H∗(BU(n)). �

Definition 3.20 A characteristic class is multiplicative 11 if for any vector bundles V, V ′,

c(V ⊕ V ′) = c(V ) · c(V ′)

By Thm. 3.13, they are characterized by the canonical line bundle.

Definition 3.21 The polynomial multiplicative class associated to the formal power series

1

1− e−x
= 1 +

1

2
x+

1

12
x2 +

1

720
x4 + · · ·

is the Todd genus, denoted Todd.

11 A multiplicative class C such that C(1) = 1 where 1 is the trivial line bundle is a genus. They are the formal
power series in Prop. 3.19 whose zeroth order term is 1.
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Chapter 4
Axiomatzation of the Index Theorem

The aim of this chapter is to reformulate Thm. 0.1 axiomatically. In the first section, we
first construct explicitK-theory morphisms and classes, due to Higson, [Hig93]. A key tool
used is Cor. 2.20. We then conclude with a comparison of Thom homomoprhisms via the
Chern character map developed in Chapter. 3. In the second section via a standard local to
global argument, we axiomatze the index problem.

We begin this chapter with a new, subtle but very important, definition. A graded Hilbert
space is a Hilbert space (S, ι) with an orthogonal involution ι : S → S, such that S =
S+ ⊕ S−, where S± are the ±1 eigenspaces. An EPDO P : Γ(M ;S) → Γ(M ;E) can be
turned symmetric via Cor. 1.18. Hence, we may apply functional calculus to P . However,
we need a new notion of index, as symmetric EPDOs are of index 0 in the original sense.

Definition 4.1 (Index of symmetric odd graded EPDO D) Let D be a symmetric EPDO on a
graded Hilbert bundle (S, ι) → M , satisfying Dι = −ιD . With respect to decomposition
S = S+ ⊕ S−,

D =

(
0 D∗+
D+ 0

)
We thus define

Ind(D, ι) := Ind(D+) = Tr(I|ker(D))

Hence, we will work with symmetric EPDO which are odd-graded, order 1 on a graded
Hermitian vector bundle (S, ι) → M . We will not state conditions when context is clear.
We define the topological K theory of locally compact spaces as

K0(X) = K0(C0(X))

via operator K-theory. We will omit the 0s when context is clear.

4.1 Calculus and K Theory Classes

It is good to review Cor. 2.20, as we will be applying it twice.

We denote S := C0(R) with grading α(f(x)) = f(−x),H = H0⊕H1 a graded Hilbert space
1, whose sums are separable infinite dimensional Hilbert spaces.

1or graded Hilbert module
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Theorem 4.2 For any (ungraded) C∗-algebra A, there is an isomorphism,

K0(A)→ [S, A⊗K(H0 ⊕H1)]

to the homotopy class of graded ∗-homomoprhisms.

One direction of map. Let [p] − [q] ∈ K0(A), this induces a a graded ∗-homomoprhism
S → A⊗K(H0 ⊕H1) by

f 7→
(
pf(0) 0

0 qf(0)

)
identifying A⊗K(H0 ⊕H1) with M2(M∞(A)). 2

Proof: The construction is given by Quillen, [Qui88].{
Graded maps φ in S → K(H0 ⊕H1)

}
 

{
skew unitaries uφ in K(H0 ⊕H1)+

}

 

{
Projections in [pφ]− [p1] in K(K(H0 ⊕H1) )

}

First transformation is by Cayley transform c : x 7→ x+i
x−i , which induces graded morphism

C(T) S+ M2(M∞(A))+
c∗ φ̃

z 7→ uz

C(T) is graded by γ(f(w)) = f(w̄) and generated3 by inclusion z : S1 → C, with γ(z) =
z−1, zz∗ = 1. So α(uφ) = u∗φ = u−1

φ . This is a skew unitary. 4 which corresponds bijectively
to projections

u!
1

2
(1 + uε) =: pu, ε :=

(
1 0
0 −1

)
p1 − pφ lies in A⊗K(H0 ⊕H1), defining an element

[p1]− [pφ] ∈ K(A⊗K(H0 ⊕H1)) ' K(A)

This yields a group isomoprhism, via standard rotation arguments in operatorK-theory. �

We may generalize 4.2, [Hig14, Prop. 3.32]

Proposition 4.3 A graded ∗-homomoprhism S ⊗A→ B ⊗K determines a K-theory map

φ∗ : K(A)→ K(B)

such that:

1. φ 7→ φ∗ is functorial with respect to each argument.
2The grading is given by diagonal matrices even and off diagonal are odd.
3By Stone-Weierstrass.
4Skew unitaries v in graded unital C∗ algebra, C, with grading β, are unitaries such that β(v) = v∗.
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2. φ∗ depends only on homotopy class

As an application, we construct a K-theory class that yields Ind(D, ι).

Corollary 4.4 The element [φD] ∈ K(C) ' Z is the Frehdolm index of the operator of a symmetric
odd graded EPDO D, where

φD : S → K(H)

is defined via functional calculus.

Proof: We define for each s ∈ (0, 1] the following map via functional calculus,

φs−1D : f 7→ f(s−1D) ∈ [S,K(L2(M))]

As lims f(s−1x) = δ0(x), we have a homotopy to the projection on 0 eigenspace. So

[P |H+ ]− [P |H− ]

is our K-theory class in K(C) ' K0(K(H0 ⊕H1)). Taking traces yield

dim(ker(D) ∩H+)− dim(ker(D) ∩H−) = Ind(D, ι).

�

K-Theory Class from Symbol

We construct an element in [σD] ∈ K(T ∗M) from σD symbol.

Definition 4.5 Let S be a graded Hermitian vector bundle over locally compact Z, c : S → S
a self-adjoint, odd endomorphism. c : S → S is elliptic if the operator norm of

(I + c(z)2)−1 : Sz → Sz

vanish at infinity.

The symbol, regarded as σD : π∗S → π∗S, of a symmetric EPDO, is an elliptic morphism.
Ellipticity shows (σD)ξ is bounded below on the complement of an neighborhood of zero
section in T ∗M . From homogenity, (σD)tξ = t(σD)ξ, we obtain the vanishing condition.

Definition 4.6 We define c ∈ K(Z) the difference class of elliptic endomorphism c : S → S:

By functional calculus, there is a graded ∗-homomorphism with in the compact orators of
Hiblert module C0(Z, S)C0(Z).

φc : S → KC0(Z)(C0(Z, S))

f 7→ f(c)

This is a K-theory class, by Cor. 2.20.

c ∈ K(Z) ' K0(KC0(Z)(C0(Z, S)).

The symbol class5 of D is the difference class σD ∈ K0(T ∗M).
5In Thm. 4.2 the symbol class yields unitary uD := (σD + iI)(σD − iI)−1
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Thom Homomorphism of K-Theory

We use functional calculus to extend the Thom homomoprhism of K-theory over compact
spaces. Let Λ∗V be the exterior algebra of vector bundle π : V → X , Z/2Z graded by even
and odd degrees. Define

b : π∗Λ∗V → π∗Λ∗V

b(v)s = v ∧ s+ vys

Locally, b(v)2 = ||v||2 · I , so b is an elliptic element as Def. 4.5. Functional calculus induces
graded ∗-homomorphism

φ : S ⊗ C0(X)→ KC0(Z)

(
C0(V,Λ∗V )

)
φ(f ⊗ h)(v) = f(b(v))h(π(v))

The image identifies with the algebra of compact operators on the Hilbert moduleC0(V,Λ∗V )C0(V ).

By general formula Thm. 4.3, and Cor. 2.20,

φ : K0(C0(X))→ K0(C0(V ))

Definition 4.7 The homomorphismφ : K(X)→ K(V ) is also called the Thom homomorphism.

Definition 4.8 If V → X is complex Hermitian bundle over compact X , the Thom element
(class) bV ∈ K(V ) is difference class as given in Def. 4.6.

Over compact space X , the homomoprhism coincides with

φ′ : K(X)→ K(V ), x 7→ π∗(x) · bV

By Bott periodicity and a Cayley transform, [Fra18, Prop. 15],

Theorem 4.9 LetV be a finite dimensional complex Hermitian vector space. The abelian groupK(V )
is freely generate by the Thom element (Bott element.)

Comparison of the Thom Homomorphisms

We may extend the definition of Chern character from compact to locally compact spaces
by one point compactification X+.

0 K(X) K(X+) K(∗) 0

0 Hev
c (X) Hev(X+) Hev(∗) 0

ch ch

Proposition 4.10 Let V be a k-dimensional complex vector bundle over closed manifold M . Define
τ(V ) ∈ Hev(M) by the formula

ch(bV ) = τ(V ) · uV
where bV is theK-theory Thom class, and uV ∈ Hev(V ) is the cohomology Thom class. Then τ(V )
is a multiplicative characteristic class.
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Proof: Functoriality is clear. We can view V2 as a vector bundle over the total space of V1 by
pulling back to V1. Then compositions of Thom homomoprhisms

K(M)
φv−→ K(V1)

φπ∗V2−−−−→ K(V1 ⊕ V2)

Hev(M)
ψV−−→ Hev(V1)

ψπ∗V2−−−−→ Hev(V1 ⊕ V2)

are equal6 to the Thom homomoprhisms in K-theory for the complex vector V1 ⊕ V2 over
M . ForK-theory, this is seen by using the ∗-homomorphism representation,[Hig14, Lemma
5.15]. From functoriality, ring morphism property, and that Thom homomorphism in co-
homology is a H∗(M) module homomorphism.

ch(φV1⊕V2(x)) = τ(V1)τ(V2)ψV1⊕V2(x)

�

By Thm. 3.19, τ is given by a formal power series, evaluated at canonical bundle EU(1)→
BU(1). By an induction on filtration of CP∞, we have, [Hig14, Thm. 5.16].

Lemma 4.11 τ is associated topower series (1 − ex)/x. As a special case of the proof, for complex
vector space W of dimension k, ∫

W

ch(bW ) = (−1)k

4.2 Axiomitization of the Index Map

We think of Thom homomoprhism as a wrong way map. Another is the inclusion of open
sets X ↪→ Y , inducing

i! : K(X) = K0(C0(X))→ K0(C0(Y )) = K(Y )

Chern character is not functorial in the wrong way - and its defect measured by τ . We now
axiomatize the index theory problem, [Hig93].

Theorem 4.12 Assume that to every manifold M , there is associated a homomorphism Inda,M :
K(T ∗M)→ Z with the following properties:

(i) If i : M1 ↪→M2 is an embedded as an open subset of M2, then the diagram

K(T ∗M1) K(∗)

K(T ∗M2) K(∗)

i!

Inda,M1

Inda,M2

commutes, where i! is the wrong way open inclusion from embedding.

6via the canonical isomorphism π∗V2 ' V1 ⊕ V2

37



(ii) If V is a real vector bundle of dimension k over M , and if φ : K(T ∗M)→ K(T ∗V ) denotes the
Thom homomoprhism, then the diagram

K(T ∗M) K(∗)

K(T ∗V ) K(∗)

Inda,M

Inda,V

commutes.

(iii) If b ∈ K(T ∗Rn) is the Bott element, then IndRn(b) = 1.

Then 7

Inda,M (x) = (−1)dim(M)

∫
T∗M

Todd(TM ⊗ C) ch(x)

for every M and x ∈ K(T ∗M).

We explain the orientations. For (ii), by choice of an Euclidean metric, identify TM ' T ∗M ,
and TV ' T ∗V . The pullback π : TM →M induces isomoprhism

TV ' π∗(V ⊕ V )

and we identify V ⊕V = V ⊗C, giving orientation fo the other bundles. For (iii), we orient
T ∗M by choosing a local coordinates {xi}n1 , with dual, {dxi}n1 , so that {xi, dxi}n1 is an ori-
entation on T ∗M .

Proof: We start with Rn case. By normalization axiom, when x = b, LHS is 1 ∈ K(∗). As the
Todd genus is a multiplicative characteristic class and its evaluation is 1 on trivial bundles,
we are reduced to Lem. 4.11. By Bott Periodicity, Thm. 2.33, b generates K(T ∗Rn). We are
thus done when M = Rn.

By functoriality of axiom (i), the statement holds for all open subsets of Rn. Now take a
tubular embedding, i : M ↪→ Rn, normal bundleNiV →M , whereNiM is homeomorphic
to an open subset of Rn. By axiom (i) again, the theorem holds for T ∗NiM . We apply axiom
(ii). Commutativity implies

Inda,M (x) = Inda,V (φ(x)) = (−1)n+k

∫
T∗NiM

ch(φ(x))

By Prop, 4.11 and Thm. 4.10

Inda,M (x) = (−1)n+k

∫
T∗M

τ(V ⊗ C) ch(x).

As NiM ⊕ TM ' Rn+k is a trivial bundle, using multiplicative property of τ , Todd, and
Lem. 4.11, giving

τ(V ⊗ C) = (−1)k Todd(TM ⊗ C)

7Note that as both elements lie in even cohomology the order of product does not matter in integral.
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�
We connect to Sec. 3.1. Axiom (iii) says IndRn : K(T ∗Rn) ' K(TRn)→ K(∗) is the inverse
of suspension

K(∗)→ K(TRn) ' K(Cn), x 7→ x · bV
induced by Bott element, Thm. 4.9. We proceed with fiber integration.

Definition 4.13 The topological index Indt,i of a compact smooth manifold M , with a choice
of tubular embedding i : M ↪→ Rn, is given by

K(T ∗NiM) K(T ∗Rn) ' K(Σn ∧ {∗}+)

K(T ∗M)

K(∗) ' Z

i!

susp,'

Indt,i

Thom,'

On the other hand, we want the analytic index map to satisfy Thm. 4.12 and

Definition 4.14 (The analytic map) For each manifold M , there is a homomorphism

Inda,M : K(T ∗M)→ K(∗)

such that if M is compact, and if σD ∈ K0(T ∗M) is the symbol class of an elliptic operator
D on M , then Inda(σD) = Ind(D) in K(∗) ' Z.

The problem therefore becomes8

Inda = Indt,i

8We then have independence of embedding!
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Chapter 5
Groupoids and ∗-Asymptotic Morphisms

In this chapter, we follow the proof of Higson’s, [Hig14], which avoids the use of pseudod-
ifferential operators. This is done via asymptotic ∗-morphisms. The background developed
here would ultimately help one understand more the second proof in Chapter 6.

We begin by quickly reviewing standard groupoids. In the second section we describe func-
torial properties of asymptotic ∗-morphisms, and in the last, we construct the key groupoid
algebra which allows us to prove the symbol class is mapped to the topological index, Thm.
5.12, via the index map in the end of Chapter. 4.

The prerequisites of this chapter are the definition of groupoids, Haar systems and groupoid
algebras, [Ren80]. A groupoid is denoted as G ⇒ G(0). We let r, s be the source and
range maps, and identify G(0) in G via the unit map. GA := s−1(A), GB = r−1(B) and
GBA = s−1(A) ∩ r−1(B). A groupoid is smooth if G and G(0) are smooth manifolds, all mor-
phisms are smooth, unit map is an embedding, and r, s are submersions. We will only be
working with smooth groupoids.

5.1 Standard groupoids

We list a few important groupoids.

Definition 5.1 If G ⇒ G(0), ϕ : X → G(0) is an open surjective map, the pullback groupoid,
ϕ∗(G)⇒ X given by

ϕ∗(G) = {(x, γ, y) ∈ X ×G×X : ϕ(x) = r(γ), ϕ(y) = s(γ)

s(x, γ, y) = y

r(x, γ, y) = x

(x, γ1, y) · (y, γ2, z) = (x, γ1 · γ2, z)

(x, γ, y)−1 = (y, γ−1, x)

Definition 5.2 A groupoid G is called a deformation groupoid if

G = G1 × {0} ∪G2 × (0, 1]⇒ G(0) = M × (0, 1]

where G1 and G2 are groupoids with unit space M .
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Definition 5.3 The tangent groupoid is the gluing of tangent bundle with pair groupoid,

GtM := TM × {0} tM ×M × (0, 1]⇒M × [0, 1]

We may assign a smooth structure on GtM .

Definition 5.4 Two groupoids G ⇒ G(0), H ⇒ H(0) are Morita equivalent if there exists
groupoid P ⇒ G(0) tH(0) such that

• PG(0)

G(0) = G,PH
(0)

H(0) = H

• For any γ ∈ P exists η ∈ PH(0)

G(0) ∪ PG
(0)

H(0) such that (γ, η) is composable.

A groupoid G⇒ G(0) can be viewed as a family of manifolds,

Gx = {γ ∈ G : s(γ) = x}

parameterized by x ∈ G(0). For smooth groupoid, a Haar system always exists.

Definition 5.5 Given x ∈ G(0), f ∈ Cc(G), ξ ∈ L2(Gx, νx), γ ∈ Gx we set

πx(f)(ξ)(γ) =

∫
η∈Gx

f(γη−1)ξ(η) dνx(η)

πx is a ∗-representation of Cc(G) on the Hilbert space L2(Gx, νx). The inequality

||πx(f)|| ≤ ||f ||1

holds. The reduced norm on Cc(G) is

||f ||r = sup
x∈G(0)

{||πx(f)||}

which defines a C∗-norm. The reduced C∗ algebra Cr(G, ν) is the completion of A as C∗
algebra with respect to || · ||r.

When G is smooth, the reduced and maximal C∗-algebras does not depend up to isomo-
prhism of Haar system ν. All groupoids we use have full and reduced norm equal, [Con95].
1 A standard example of groupoid algebra is

C∗(TM) ' C0(T ∗M)

To see this isomoprhism, equip TM with a Riemannian structure. We let f ∈ Cc(TM) and
define a morphism into C0(T ∗M) by

(x,w) ∈ T ∗M, f̂(x,w) = (2π)−
n
2

∫
X∈TxM

e−iw(X)f(X) dX

Via Fourier theory, this is ∗-isometric.

1 This is true for a large class of groupoids, the amenable groupoids.
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Proposition 5.6 Let X be smooth manifold, µ a positive regular borel measure on X , then

C∗(X ×X) = C∗r (X ×X) ' K(L2(X,µ))

Proof: The ∗-representation

π : Cc(X ×X)→ L(L2(X,µ)) : π(f)(ξ)(x) =

∫
z∈X

f(x, z)ξ(z) dµ(z)

is in fact ∗-isometric. Further, the image is a dense subset of Hilbert Schimdt operators on
L2(X,µ), of which are dense in compact operators, [Gar14, Ch. 6]. �

5.2 Asymptotic ∗- Morphisms

We will use Higson’s, [Hig93], asymptotic morphisms to construct index map.

Definition 5.7 Let A andB be C∗ algebra. An asymptotic morphism from A toB is a family of
functions φt : A→ B, t ∈ [1,∞) such that

• For each a ∈ A, the map t 7→ φt(a) ∈ B is coutinuous and bounded.

• For all a, a1, a2 ∈ A, λ1, λ2 ∈ C

lim
t→∞


φt(a1a2)− φt(a1)φt(a2)

φt(λ1a1 + λ2a2)− λ1φt(a1)− λ2φt(a2)

φt(a
∗)− φt(a)∗

 = 0

Theorem 5.8 An asymptotic morphism φt : A → B determines a K-theory map φ∗ : K(A) →
K(B) with the following properties:

1. The correspondence φ 7→ φ∗ is functorial with respect to composition with ∗-homomorphisms,
A1 → A and B → B1.

2. If each φt is actually a ∗-homomorphism, then φ∗ : K(A)→ K(B) is the map induced by φ1.

Proof: We construct the map φ∗ - that it satisfies the properties is a check. Let A(B) denote
the space of continuous bounded functions from [1,∞) toB. This induces an exact sequence

0→ J (B)→ A(B)→ Q(B)→ 0

where J (B) is the algebra of functions which vanish at infinity, and is contractible. By Cor.
2.34,

K0(A(B))
'−→ K0(Q(B))

An asymptotic morphism φt induces a map φ̃ : A→ Q(B), by a 7→ t 7→ [φt(a)]. Hence,

K0(A) K0(B)

K0(Q(B)) K(A(B))

φ̃∗

φ∗

'

ev1
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where ev1 is evaluation map at 1. �

We describe here, [Hig93, Pg. 3] the action of φ on p, a projection, in unital A. As

lim
t
||φt(p)− φt(p)2|| = 0

Functional calculus implies exists a continuous family of projections qt ∈ B such that

||φt(p)− qt|| → 0

We then define
φ[p] := [q1]

5.3 Tangent Groupoid

We construct Inda. LetM be a compact manifold with a fixed positive regular Borel measure
ν on M . Consider its tangent groupoid GtM . Then µ determines a family of translation
invariant measure µm on TmM . We define smooth measures on the fibers of GtM by{

µm,0 = µm on GtM (m,0) ' TmM
µ(m,t) = t−nµ on GtM (m,t) 'M

This defines a smooth right invariant system, [Hig14, Lem. 7.23], with two ∗-morphisms

ε0 : C∗(GtM )→ C0(T ∗M)

by restriction to zero section, and for t 6= 0, the restricted representation, 2

εt : C∗(GtM )→ K(L2(M))

using Prop. 5.6.

By choosing a not necessarily concintuos section σ of surjection ε0,

C∗(GtM ) C0(T ∗M)

σ

we can define the following asymptotic ∗-homomorphism, [Hig93]

Proposition 5.9 The family of maps, αt : C0(T ∗M)→ K(L2(M))

C0(T ∗M) K(L2(M))

C∗(GtM )

σ

αt

εt−1

αt(h) = εt−1(σ(h)), t ∈ [1,∞), h ∈ C0(T ∗M)

2 For each t, lies in operators on L2(M, t−nµ), these Hilbert spaces are unitarily equivalent by scalaing tn/2
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This will be our index homomorphism once we relate symmetric EPDO D to groupoids.
We revisit the symbol operator. If D =

∑
aj∂j + b in local coordinates, acting on Γ(M,S),

then σD maps ξ ∈ T ∗M , to the endomorphism∑
aj(m)ξj : Sξ → Sξ

where Sξ denotes a fiber. Thus, this determines translation invariant operator on each m ∈
M

Dm : Γ(TmM ;TmM × Sm)→ Γ(TmM ;TmM × Sm)

where Dm =
∑
aj(m)∂j . The operators Dm are the model operators. 3

We associate to D a family of smooth varying PDOs on the fibers.{
Dm,0 = Dm on GtM(m,0) ' TmM
Dm,t = tD on GtM(m,t) 'M

Utilizing the first order condition, we have:

Theorem 5.10 [Hig14, Thm. 7.33], [Che73] Let D = {Dx} be a smooth right translation in-
variant family of symmetric EPDOs on the fibers Gx of G with compact base space, there is a ∗-
homomoprhism

φ̃D = C0(R)→ C∗r (G, ν)

with the property that if x ∈ G, for all regular representation πx : Cc(G) → L2(Gx, νx), as Def.
5.5,

πx(φ̃D(f)) = f(Dx) : L2(Gx)→ L2(Gx)

for every f ∈ C0(R).

Consider when D acts on the trivial one dimensional complex manifold.

Proposition 5.11 Let D be a first order elliptic operator on the one dimensional trivial bundle of a
closed manifoldM . Let f ∈ C0(R). The index asymptotic morphism, αt : C0(T ∗M)→ K(L2(M))
maps to f(σD) ∈ C0(T ∗M) to the family αt(σD) = f(t−1D) ∈ K(L2(M)).

Proof: σ : C0(T ∗M)→ C∗(GtM ) only has to be a set theoretic section. The symbol σD acts on
the fibers, C, so f(σD) ∈ C0(T ∗M). We define the section on this image by

σ(f(σD)) := φ̃D(f)

using Thm. 5.10. We define arbitrary section on the complement.4 The index map is given
by Prop. 5.9. �

Theorem 5.12 LetD be a first order symmetric odd graded EPDO on a closed manifoldM , the index
map α : K(T ∗M)→ K(∗) from Prop. 5.11, maps [σD] to Ind(D, ι).

3In otherwords, D may be regarded as a EPDOs with constant coefficients locally.
4Since we need not a continuous section
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Proof: Via Thm. 4.2 we have correspondence

[f 7→ f(t−1D)] ∈ [S,K(L2(M))] ut := (t−1D + iI)(t−1D − iI)−1

[f 7→ f(σD)] ∈ [S, C0(T ∗M)] uD := (σD + iI)(σD − iI)−1

Prop. 5.11 implies
lim
t
||αt(uD)− ut|| → 0

α∗([σD]) = α∗([p1]− [pσD ]) = [p1]− [pu1 ]

This is Prop. 4.4. �

The argument generalizes verbatim when D acts on a graded Hermitian vector bundle S
over M , with groupoid algebra C∞c (G,End(S)).

The last step

We will end our discussion of Higson’s proof here. We are done with order 1 case provided com-
patibility with Thom homomorphism, this is done analyzing asymptotic ∗-morphisms, [Hig14,
Thm. 8.12].
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Chapter 6
The Kasparov Product

This chapter provides a second proof of Atiyah-Singer, due to [DLN06]. This proof proves
the general case and utilizes all the tools developed in the preivous chapters. We omit a
step in justifying why Def. 6.20 is the analytic map, and refer to the original source. This
requires notions of pseudodifferential operators, which we do not have space to develop.

The proof in [DLN06] uses a bivariantK-theory,KK-theory. The presentation here wishes
to highlight the formal properties of KK-theory and the final proof of the Atiyah Singer
theorem. Hence, in the first two sections, after defining Kasparov modules, and discussing
some axiomatic properties, we look into universal characterization, [Hig87].

In the grand scheme, Higson’s proof in Chapter 5, motivates E-theory, [Con95], a category
whose objects are C∗ algebras but with asymptotic C∗ homomorphisms as hom-sets. It
can be regarded as the universal half exact localization of C∗Alg. KK-theory, on the other
hand, is the universal split exact localization. We will see this in the second section.

Hopefully, after exposure to the two proofs of Atiyah-Singer index theorem, the reader
can start appreciating the role of deformation groupoids, and part of the noncommutative
language of index theory.

6.1 Kasparov Modules

Definition 6.1 A Kasparov A-B-module is given by a triple x = (E , π,F) where E = E0⊕E1 is
Z/2Z-graded and countably generated HilbertB-module. π : A→ Mor(E) is a ∗-morphism
of degree 0 with respect to the grading, and F ∈ Mor(E) is of degree 1. For all1 a ∈ A,

1. π(a)(F 2 − 1) ∈ K(E)

2. [π(a), F ] ∈ K(E).

we denote the set of Kasparov A-B modules by E(A,B).

Definition 6.2 A Kasparov A-B module x = (E , π,F) is degenerate if for all a ∈ A, π(a)(F 2−
1) = 0 and [π(a), F ] = 0.

As operator K-theory, we have the notions of sum, pullback, inner2 and outer tensor prod-
ucts, [JT91]

1 Contrary to original, we omit condition π(a)(F − F ∗) ∈ K(E), which was observed unnecessary, [Ska91].
2Care must be taken for induced morphisms. This is where Connes introduced the notion of connections.
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We also have homotopy, with evaluation ∗-morphisms,

evt : IB → B, f 7→ f(t), IB := C([0, 1], B)

Definition 6.3 Two KasparovA-B modules (Ei, φi,Fi), i = 0, 1 are homotopic if there is a Kas-
parov A-IB module, (E , φ,F) ∈ E(A, IB) with ev0∗(E) ' E and ev1∗(E) ' F as Kasparov
A-B modules. The set of homotopy classes is denoted KK(A,B)

In particular, degenerate elements of E(A,B) are homotopic to (0, 0, 0) and as operator K-
theory,

Proposition 6.4 Sum of Kasparov modules give KK(A,B) a structure of an abelian group.

We end with two useful examples.

Proposition 6.5 Each ∗-morphism f : A → B defines an element, by [f ] ∈ KK(A,B). We set
1A := [idA] ∈ KK(A,A).

Proof: Since KB(B) ' B, f induces a representation on B as a Hilbert B-module, hence

[f ] := [(B, f, 0)]

is a A-B Kasparov module. �

Proposition 6.6 KK(C, B) ∼= K0(B).

Proof: We sketch the unital case. A finitely generated projective Z/2 graded B module E is
submodule ofBN ⊕BN for someN . Hence, has the structure of HilbertB module. Further
[DL08, Prop. 4.26] IdE is a compact operator (we require unital B), so

(E , ι, 0) ∈ E(C, B)

where ι is the scaling representation of C on E . This yields an group morphism K0(B) →
KK(C, B). An inverse construction can be given. �

6.2 Universal Characterization of KK-Theory

Success of Kasparov’s work, [Kas80], lies in the Kasparov product, motivated by Fredholm
operators. Higson, [Hig87], exploited the Cuntz picture, seeing KK(A,B), as quasihomo-
morphisms, [Cun83]. KK is the universal

Definition 6.7 F : C∗Alg→ Ab

1. F is homotopy functor.

2. For every separable C∗ algebra B, the homomoprhism e∗ : F (B) → F (K ⊗ B) is an
isomoprhism.

3. F preserves split exact sequences:

0 I A A/I 0

is a split exact sequence then so is

0 F (I) F (A) F (A/I) 0
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Characterization begins with a Yonneda-like observation, [Hig87, Thm. 3.7],

Theorem 6.8 There is a natural bijection

Hom(KK(A,−), F−) ∼= FA

where Hom denotes the set of natural transformations, i.e. each x ∈ A yields unique transformation
τ , τ(1A) = x.

Kasparov proved the existence of the pairing, [Kas80]

Theorem 6.9 There exists a bilinear pairingKK(A,B)×KK(B,C)→ KK(A,C) denotedx, y 7→
x⊗B y such that

1. If f : A′ → A, f∗(x⊗B y) = f∗(x)⊗B y.

2. If g : B → B′ then g∗(x)⊗B′ z = x⊗B g∗(z) where z ∈ KK(B′, C).

3. If h : C → C ′, then h∗(x⊗B y) = x⊗B h∗(y)

4. 1A ⊗A x = x⊗B 1B = x.

Applying this pairing, all axioms of Def. 6.7 for KK(A,−) are satisfied. Importantly, from
the construction Prop. 6.5, we have the compatibility

Corollary 6.10 Let f : C → A, g : B → E, h : D → C, x ∈ KK(A,D), z ∈ KK(C,B), then

f∗(x) = [f ]⊗A x, g∗(z) = z ⊗B [g] and [f ◦ h] = [h]⊗C [f ]

We prove associativity.

Theorem 6.11 The Kasparov product is associative.

Proof: Let x ∈ KK(A,B), y ∈ KK(B,C). We have two natural transformations

KK(C,D) KK(B,D)

KK(A,D)

(−)⊗B(y⊗Cz)

(−)⊗By

(−)⊗Cz

satisfying 1C 7→ x⊗B y using properties of 6.9. Hence, by 6.8, they coincide. �

Definition 6.12 Let kk be a category whose objects are separableC∗ algebras and morphisms
are KK(A,B). Law of composition y ◦ x is given by x⊗B y.

Corollary 6.13 The Kasparov product, is the Hom funtor of an additive category kk,

KK(−,−) : C∗Alg×C∗Alg→ C∗Alg
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There is a canonical functor
i : C∗Alg→ kk, A 7→ A, i(f) = f∗(1A)

where 1A ∈ KK(A,A). We come to the universal characterization of KK-theory.
Theorem 6.14 The canonical functor i : C∗Alg → kk, in 6.13, is universal with respect to all
functors F : C∗Alg→ A be satisfying the axioms of definition 6.7. (except that codomain is kk.)

C∗Alg A

K

F

C
F̂

Proof: Axioms imply A(X,F (−)) : C∗Alg→ Ab is a homotopy invariant, stable, and split ex-
act functor. On objects, F̂ (A) = F (A). For x ∈ kk(A,B) = KK(A,B), we define F̂ (x) to be
image of x under the the natural transformation corresponding to 1F (A) ∈ A(F (A), F (A)).
This yields uniqueness. It is also functorial, [Hig87, Thm. 4.2]. �

Deformation Groupoids

There are two important results which allows us to constructKK elements. [HS83, Cor. 9].
Theorem 6.15 G ⇒ G(0) has Haar system ν. An open subset U ⊆ G(0) is saturated if U =
s(r−1(U)).

The set F = G(0) \ U is closed saturated. The Haar system ν restricted to G|U := GUU and G|F :=
GFF induces the exact sequence

0→ C∗(G|U )
i−→ C∗(G)

r−→ C∗(G|F )→ 0

where i : Cc(G|U ) → Cc(G) is the extension of functions, and r : Cc(G) → Cc(G|F ) is the
restriction of functions.

The second is a groupoid analogue of tensoring C∗ algebras.
Theorem 6.16 [ADR00] Let G1, G2 be locally compact groupoids equipped with Haar systems, and
suppose that G1 is amenable. C∗(G1) = C∗r (G1) is nuclear. G1 ×G2 is locally compact and

C∗(G1 ×G2) ' C∗(G1)⊗ C∗(G2) and C∗r (G1 ×G2) ' C∗(G1)⊗ C∗r (G2)

Lastly, we will need the six exact sequence KK-theory.

Theorem 6.17 (Six terms exact sequence) Given SES 0 → I
i−→ A

π−→ B → 0 of C∗ algebras Q
another C∗ algebra. With more assumptions, i.e. all C∗ algebras are nuclear, there is six term exact
sequence (and similarly in other variable)

KK(Q, I) KK(Q,A) KK(Q,B)

KK1(Q,B) KK1(Q,A) KK1(Q, I)

i∗ p∗

δδ

p∗ i∗
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From now on we will heavily use these three properties, the Kasparov axioms, and Prop.
6.10. Consider deformation groupoid.

G = G1 × {0} ∪G2 × (0, 1]⇒ G(0) = M × [0, 1]

Let ev1 : C∗(G)→ C∗(G2) be evaluation at 1, [ev1] ∈ KK(C∗(G), C∗(G2)), as Prop. 6.5.

Lemma 6.18 There exists [ev0]−1 ∈ KK(C∗(G1), C∗(G)) such that

[ev0]⊗ [ev0]−1 = 1C∗(G), [ev0]−1 ⊗ [ev0] = 1C∗(G1)

Proof: We apply Thm. 6.15 to obtain

C∗(G|M×(0,1]) ' C∗(G2)⊗ C0((0, 1])

C∗(G|M×{0}) ' C∗(G1)

Combining with Thm. 6.16, we have the exact sequence of C∗ algebras

0→ C∗(G2)⊗ C0((0, 1])
iM×(0,1]−−−−−→ C∗(G)

ev0−−→ C∗(G1)→ 0

where iM×(0,1], ev0 are inclusion and evaluation maps respectively.

The C∗ algebra C∗(G2) ⊗ C0((0, 1]). By functorial compatibility of the Kasparov product
and Thm. 6.17,

(ev0)∗ : KK(A,C∗(G))→ KK(A,C∗(G1)), x 7→ x⊗ [ev0]

Let A = C∗(G1) to obtain [ev0]−1. �

Definition 6.19 The KK-element associated to the deformation groupoid G is defined by

δ = [ev0]−1 ⊗ [ev1] ∈ KK(C∗(G1), C∗(G2))

We now formulate the index maps in KK-theory and groupoids.

Set G1 = TM , G2 = M ×M in Def. 6.19, we obtain an element,

∂M ∈ KK(C0(T ∗M),K) ' KK(C0(T ∗M),C).

Definition 6.20
Inda = ∂M

KK(C, C0(T ∗M)) KK(C,K))

K0(C0(T ∗M)) Z

' '

x 7→ x⊗ ∂M

That this map is analytic index map is done by G-operators, [DL08, Pg. 54].
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The Topological Index Map

We break down Def. 4.13. Given tubular neighborhood embedding i : M ↪→ Rn, N → M
its normal bundle, and T ∗N → T ∗M associated complex bundle. The Thom isomoprhism

K0(C∗(TM)) ' K(T ∗M)
'Thom−−−−−→ K(T ∗N) ' K0(C∗(TN))

is given3 by a Thom element, [Kas80]

T ∈ KK(C∗(TM), C∗(TN))

Hence, the morphism is x 7→ x⊗ T .

Definition 6.21 Let π : E → X be a vector bundle. We have the groupoids,

π[0,1] : E × [0, 1]→ X × [0, 1]

GtX ⇒ X × [0, 1]

GtE ⇒ E × [0, 1]

T tE := GtE × {0} t π∗[0,1](G
t
X)× (0, 1]⇒ E × [0, 1]× [0, 1]

and by restriction of T tE to E × {0} × [0, 1] we obtain the Thom groupoid, TE .

We apply this to the special case of the normal bundle N →M to obtain

Definition 6.22
TN = TN × {0} ∪ p∗(TM)× (0, 1]⇒ N × [0, 1]

where p∗(TM) is the pullback groupoid along p : N →M of TM ⇒M

Set G1 = TN , G2 = p∗TM , in Def. 6.19, we obtain element

τN ∈ KK(C∗(TN), C∗(p∗TM)) ' KK(C∗(TN), C∗(TM))

via Morita equivalence. But this is exactly the inverse of T , [DLN06],

Theorem 6.23 τN = T−1, where τN given in Def. 6.22, T being the KK-equivalence inducing
Thom isomoprhism.

From the embedding ∗ ↪→ Rn, with the normal bundle Rn → ∗, τRn ∈ KK(C∗(TRn),C)
coincides with the isomoprhism induced by Bott element by Thm. 6.23. This is thus our
topological index

Definition 6.24
Indt = τRn ◦ i∗ ◦ τ−1

N

KK(C, C∗(TM)) KK(C, C∗(TN)) KK(C, C∗(TN))

K(C∗(TM)) K(C∗(TN)) K(C∗TRn) ' Z

' ' '

3Given x ∈ KK(A,B) the Kasparov product induces maps KK(,A) ' K0(A)→ K0(B) ' KK(C, B), α⊗
αx. In many cases, this map is surjective.
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6.3 Proof of the Atiyah-Singer Index Theorem

We construct the Thom groupoid at a higher lever. Define p × id : N × [0, 1] → M × [0, 1],
and pullback over GtM , giving

Definition 6.25

T̃N = GtN × {0} t (p× id)∗(GtM )× (0, 1]⇒ N × [0, 1]× [0, 1]

By Def. 6.19, we have an element τ̃N ∈ KK(C∗(GtN ), C∗(GtM )).

Theorem 6.26 The following diagram commutes.

Z Z Z

K0(C∗(GtM )) K0(C∗(GtN )) K0(C∗(GtRn))

K0(C∗(TM)) K0(C∗(TN)) K0(C∗(TRn))

(Q1)

eM0

eM1

'

ĩ∗

eN1

eN0 '

(−)⊗τ̃N

'eR
n

0

eR
n

1

i∗'
(−)⊗τN

Proof: We show (Q1). Others are similar, using essentially:

• functoriality of pairing with explicit restrictions or inclusions as maps.

• inverses via that described in Def. 6.19

• explicit Morita equivalences, via that induced from pull backs

(Q1) is broken to two pieces. Let p : N →M denote the normal bundle, inducing maps

GtN → GtM , (p× id)∗GtM → GtM , N ×N →M ×M

GtN GtM

N ×N M ×M

p

 

KK(C, C∗(GtN )) KK(C, C∗(GtM ))

KK(C, C∗(N ×N) KK(C, C∗(M ×M)

Z Z

p∗

' '

Now note that ev0j0 = id, where j0 is the zero section inclusion. By commutativity of the
left diagram, the induced maps are in fact that defined by as 6.19. This implies, p = · ⊗ τ̃N ,
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GtN GtM

T̃N p∗GtM

p

j0ev0

ev1

 

KK(C, C∗(GtN )) KK(C, C∗(GM )

KK(C, C∗(TN )) KK(C, C∗((p× id)∗GtM ))

(−)⊗[ev0]−1

(−)⊗τ̃N=p∗

(−)⊗[ev1]

where the map p∗GtM → GtM induces the Morita equivalence map. �

The outer maps are equal, which states the Atiyah Singer Index Theorem.

Theorem 6.27
Inda = Indt
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Epilogue

There are many exciting directions to explore. In continuation, there is the work by Alain
Connes, [Con95], and the Baum-Connes conjecture, [Sch16]. In the algebraic side, there is
the higher index theorem, [ENN96], [Nis97], that looks at the Chern Character from alge-
braic K-theory to periodic cyclic homology. In the mathematical physics sides, there is the
Heat kernel proof, [Get83], discussed in detail in [IN13].

Lastly, many computational aspects were left out. Wealth of material is in Michelson and
Lawson’s [HBL90], which includes applications to Kähler geometry and divisibility theo-
rems for characteristic numbers.
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